Publications by authors named "Joseph O Varghese"

A lack of inversion symmetry coupled with the presence of time-reversal symmetry endows 2D transition metal dichalcogenides with individually addressable valleys in momentum space at the K and K' points in the first Brillouin zone. This valley addressability opens up the possibility of using the momentum state of electrons, holes, or excitons as a completely new paradigm in information processing. The opportunities and challenges associated with manipulation of the valley degree of freedom for practical quantum and classical information processing applications were analyzed during the 2017 Workshop on Valleytronic Materials, Architectures, and Devices; this Review presents the major findings of the workshop.

View Article and Find Full Text PDF

Abnormal signaling of the protein kinase Akt has been shown to contribute to human diseases such as diabetes and cancer, but Akt has proven to be a challenging target for drugging. Using iterative in situ click chemistry, we recently developed multiple protein-catalyzed capture (PCC) agents that allosterically modulate Akt enzymatic activity in a protein-based assay. Here, we utilize similar PCCs to exploit endogenous protein degradation pathways.

View Article and Find Full Text PDF

Adsorbed molecules can significantly affect the properties of atomically thin materials. Physisorbed water plays a significant role in altering the optoelectronic properties of single-layer MoS2 , one such 2D film. Here the distinct quenching effect of adsorbed water on the photoluminescence of single-layer MoS2 is demonstrated through scanning-probe and optical microscopy.

View Article and Find Full Text PDF

The local charge carrier density of graphene can exhibit significant and highly localized variations that arise from the interaction between graphene and the local environment, such as adsorbed water, or a supporting substrate. However, it has been difficult to correlate such spatial variations with individual impurity sites. By trapping (under graphene) nanometer-sized water clusters on the atomically well-defined Au(111) substrate, we utilize scanning tunneling microscopy and spectroscopy to characterize the local doping influence of individual water clusters on graphene.

View Article and Find Full Text PDF

The interaction of water vapor with hydrophobic surfaces is poorly understood. We utilize graphene templating to preserve and visualize the microscopic structures of adsorbed water on hydrophobic surfaces. Three well-defined surfaces [H-Si(111), graphite, and functionalized mica] were investigated, and water was found to adsorb as nanodroplets (∼10-100 nm in size) on all three surfaces under ambient conditions.

View Article and Find Full Text PDF

We report on the use of graphene templating to investigate the room-temperature structure and dynamics of weakly bound adlayers at the interfaces between solids and vapors of small organic molecules. Monolayer graphene sheets are employed to preserve and template molecularly thin adlayers of tetrahydrofuran (THF) and cyclohexane on atomically flat mica substrates, thus permitting a structural characterization of the adlayers under ambient conditions through atomic force microscopy. We found the first two adlayers of both molecules adsorb in a layer-by-layer fashion, and atomically flat two-dimensional islands are observed for both the first and the second adlayers.

View Article and Find Full Text PDF