High northern latitude changes with Arctic amplification across a latitudinal forest gradient suggest a shift towards an increased presence of trees and shrubs. The persistence of change may depend on the future scenarios of climate and on the current state, and site history, of forest structure. Here, we explore the persistence of a gradient-based shift in the boreal by connecting current forest patterns to recent tree cover trends and future modeled estimates of canopy height through 2100.
View Article and Find Full Text PDFTundra dominates two-thirds of the unglaciated, terrestrial Arctic. Although this region has experienced rapid and widespread changes in vegetation phenology and productivity over the last several decades, the specific climatic drivers responsible for this change remain poorly understood. Here we quantified the effect of winter snowpack and early spring temperature conditions on growing season vegetation phenology (timing of the start, peak, and end of the growing season) and productivity of the dominant tundra vegetation communities of Arctic Alaska.
View Article and Find Full Text PDFUnderstanding the distribution of life's variety has driven naturalists and scientists for centuries, yet this has been constrained both by the available data and the models needed for their analysis. Here we compiled data for over 67,000 marine and terrestrial species and used artificial neural networks to model species richness with the state and variability of climate, productivity, and multiple other environmental variables. We find terrestrial diversity is better predicted by the available environmental drivers than is marine diversity, and that marine diversity can be predicted with a smaller set of variables.
View Article and Find Full Text PDFClimate and land-use change are the major drivers of global biodiversity loss. Their effects are particularly acute for wide-ranging consumers, but little is known about how these factors interact to affect the abundance of large carnivores and their herbivore prey. We analyzed population densities of a primary and secondary consumer (mule deer, Odocoileus hemionus, and mountain lion, Puma concolor) across a climatic gradient in western North America by combining satellite-based maps of plant productivity with estimates of animal abundance and foraging area derived from Global Positioning Systems telemetry data (GPS).
View Article and Find Full Text PDFBackground: Many studies of animal movement have focused on directed versus area-restricted movement, which rely on correlations between step-length and turn-angles and on stationarity through time to define behavioral states. Although these approaches might apply well to grazing in patchy landscapes, species that either feed for short periods on large, concentrated food sources or cache food exhibit movements that are difficult to model using the traditional metrics of turn-angle and step-length alone.
Results: We used GPS telemetry collected from a prey-caching predator, the cougar (), to test whether combining metrics of site recursion, spatiotemporal clustering, speed, and turning into an index of movement using partial sums, improves the ability to identify caching behavior.
Deforestation in the tropics is not only responsible for direct carbon emissions but also extends the forest edge wherein trees suffer increased mortality. Here we combine high-resolution (30 m) satellite maps of forest cover with estimates of the edge effect and show that 19% of the remaining area of tropical forests lies within 100 m of a forest edge. The tropics house around 50 million forest fragments and the length of the world's tropical forest edges sums to nearly 50 million km.
View Article and Find Full Text PDFThe effect of climatically-driven plant phenology on mammalian reproduction is one key to predicting species-specific demographic responses to climate change. Large ungulates face their greatest energetic demands from the later stages of pregnancy through weaning, and so in seasonal environments parturition dates should match periods of high primary productivity. Interannual variation in weather influences the quality and timing of forage availability, which can influence neonatal survival.
View Article and Find Full Text PDFWe conducted an analysis of global forest cover to reveal that 70% of remaining forest is within 1 km of the forest's edge, subject to the degrading effects of fragmentation. A synthesis of fragmentation experiments spanning multiple biomes and scales, five continents, and 35 years demonstrates that habitat fragmentation reduces biodiversity by 13 to 75% and impairs key ecosystem functions by decreasing biomass and altering nutrient cycles. Effects are greatest in the smallest and most isolated fragments, and they magnify with the passage of time.
View Article and Find Full Text PDFUsing a consistent, 20 year series of high- (30 m) resolution, satellite-based maps of forest cover, we estimate forest area and its changes from 1990 to 2010 in 34 tropical countries that account for the majority of the global area of humid tropical forests. Our estimates indicate a 62% acceleration in net deforestation in the humid tropics from the 1990s to the 2000s, contradicting a 25% reduction reported by the United Nations Food and Agriculture Organization Forest Resource Assessment. Net loss of forest cover peaked from 2000 to 2005.
View Article and Find Full Text PDFBecause habitat loss is the main cause of extinction, where and how much society chooses to protect is vital for saving species. The United States is well positioned economically and politically to pursue habitat conservation should it be a societal goal. We assessed the US protected area portfolio with respect to biodiversity in the country.
View Article and Find Full Text PDFCities profoundly alter biological communities, favoring some species over others, though the mechanisms that govern these changes are largely unknown. Herbivorous arthropod pests are often more abundant in urban than in rural areas, and urban outbreaks have been attributed to reduced control by predators and parasitoids and to increased susceptibility of stressed urban plants. These hypotheses, however, leave many outbreaks unexplained and fail to predict variation in pest abundance within cities.
View Article and Find Full Text PDF