Clostridium difficile, Standard Test Method for Detection of Holes in Medical Gloves.
View Article and Find Full Text PDFFor over 25 years, transmission electron microscopy (TEM) has provided a method for the study of aerosol particles with sizes from below the optical diffraction limit to several microns, resolving the particles as well as smaller features. The wide use of this technique to study aerosol particles has contributed important insights about environmental aerosol particle samples and model atmospheric systems. TEM produces an image that is a 2D projection of aerosol particles that have been impacted onto grids and, through associated techniques and spectroscopies, can contribute additional information such as the determination of elemental composition, crystal structure, and 3D particle structures.
View Article and Find Full Text PDFParticulate matter is a large concern for human health. Fine and ultrafine particulate matter has been shown to negatively impact human health; for example, it causes cardiopulmonary diseases. Current regulation targets the size of the particles, but composition also impacts toxicity.
View Article and Find Full Text PDFPhysical properties of aerosol particles, such as liquid-liquid phase separation (LLPS), have the potential to impact the climate system. Model systems have been shown to have size-dependent LLPS in the submicron regime; however, these systems are an extreme simplification of ambient aerosol, which can include myriad organic compounds. We expand the studies of LLPS in particles consisting of ammonium sulfate and more complex organic mixtures from multiple organic compounds to α-pinene secondary organic matter (SOM).
View Article and Find Full Text PDFHeterogeneous ice nucleation is an important mechanism for cloud formation in the upper troposphere. Recently, pores on atmospheric particles have been proposed to play a significant role in ice nucleation. To understand how ice nucleation occurs in idealized pores, we characterized the immersion freezing activity of various sizes of carbon nanotubes.
View Article and Find Full Text PDF