Cognit Comput
December 2022
Artificial intelligence has not achieved defining features of biological intelligence despite models boasting more parameters than neurons in the human brain. In this perspective article, we synthesize historical approaches to understanding intelligent systems and argue that methodological and epistemic biases in these fields can be resolved by shifting away from cognitivist brain-as-computer theories and recognizing that brains exist within large, interdependent living systems. Integrating the dynamical systems view of cognition with the massive distributed feedback of perceptual control theory highlights a theoretical gap in our understanding of nonreductive neural mechanisms.
View Article and Find Full Text PDFIn recognition of the importance and timeliness of computational models for accelerating progress in neurorehabilitation, the U.S. National Science Foundation (NSF) and the National Institutes of Health (NIH) sponsored a conference in March 2023 at the University of Southern California that drew global participation from engineers, scientists, clinicians, and trainees.
View Article and Find Full Text PDFIn recent years, the field of neuroscience has gone through rapid experimental advances and a significant increase in the use of quantitative and computational methods. This growth has created a need for clearer analyses of the theory and modeling approaches used in the field. This issue is particularly complex in neuroscience because the field studies phenomena that cross a wide range of scales and often require consideration at varying degrees of abstraction, from precise biophysical interactions to the computations they implement.
View Article and Find Full Text PDFDynamical systems models for controlling multi-agent swarms have demonstrated advances toward resilient, decentralized navigation algorithms. We previously introduced the NeuroSwarms controller, in which agent-based interactions were modeled by analogy to neuronal network interactions, including attractor dynamics and phase synchrony, that have been theorized to operate within hippocampal place-cell circuits in navigating rodents. This complexity precludes linear analyses of stability, controllability, and performance typically used to study conventional swarm models.
View Article and Find Full Text PDFNeurobiological theories of spatial cognition developed with respect to recording data from relatively small and/or simplistic environments compared to animals' natural habitats. It has been unclear how to extend theoretical models to large or complex spaces. Complementarily, in autonomous systems technology, applications have been growing for distributed control methods that scale to large numbers of low-footprint mobile platforms.
View Article and Find Full Text PDFThe cognitive map is often assumed to be a Euclidean map that isometrically represents the real world (i.e., the Euclidean distance between any two locations in the physical world should be preserved on the cognitive map).
View Article and Find Full Text PDFDuring spatial navigation, the frequency and timing of spikes from spatial neurons including place cells in hippocampus and grid cells in medial entorhinal cortex are temporally organized by continuous theta oscillations (6-11 Hz). The theta rhythm is regulated by subcortical structures including the medial septum, but it is unclear how spatial information from place cells may reciprocally organize subcortical theta-rhythmic activity. Here we recorded single-unit spiking from a constellation of subcortical and hippocampal sites to study spatial modulation of rhythmic spike timing in rats freely exploring an open environment.
View Article and Find Full Text PDFNeurons use two main schemes to encode information: rate coding (frequency of firing) and temporal coding (timing or pattern of firing). While the importance of rate coding is well established, it remains controversial whether temporal codes alone are sufficient for controlling behavior. Moreover, the molecular mechanisms underlying the generation of specific temporal codes are enigmatic.
View Article and Find Full Text PDFThe hippocampus is thought to have a critical role in episodic memory by incorporating the sensory input of an experience onto a spatial framework embodied by place cells. Although the formation and stability of place fields requires exploration, the interaction between discrete exploratory behaviors and the specific, immediate and persistent modifications of neural representations required by episodic memory has not been established. We recorded place cells in rats and found that increased neural activity during exploratory head-scanning behaviors predicted the formation and potentiation of place fields on the next pass through that location, regardless of environmental familiarity and across multiple testing days.
View Article and Find Full Text PDFFront Comput Neurosci
November 2011
Mammals navigate by integrating self-motion signals ("path integration") and occasionally fixing on familiar environmental landmarks. The rat hippocampus is a model system of spatial representation in which place cells are thought to integrate both sensory and spatial information from entorhinal cortex. The localized firing fields of hippocampal place cells and entorhinal grid-cells demonstrate a phase relationship with the local theta (6-10 Hz) rhythm that may be a temporal signature of path integration.
View Article and Find Full Text PDFHippocampal place fields, the local regions of activity recorded from place cells in exploring rodents, can undergo large changes in relative location during remapping. This process would appear to require some form of modulated global input. Grid-cell responses recorded from layer II of medial entorhinal cortex in rats have been observed to realign concurrently with hippocampal remapping, making them a candidate input source.
View Article and Find Full Text PDFA key question in the analysis of hippocampal memory relates to how attention modulates the encoding and long-term retrieval of spatial and nonspatial representations in this region. To address this question, we recorded from single cells over a period of 5 days in the CA1 region of the dorsal hippocampus while mice acquired one of two goal-oriented tasks. These tasks required the animals to find a hidden food reward by attending to either the visuospatial environment or a particular odor presented in shifting spatial locations.
View Article and Find Full Text PDFThe word-frequency effect (WFE) in recognition memory refers to the finding that more rare words are better recognized than more common words. We demonstrate that a familiarity-discrimination model operating on data from a semantic word-association space yields a robust WFE in data on both hit rates and false-alarm rates. Our modeling results suggest that word frequency is encoded in the semantic structure of language, and that this encoding contributes to the WFE observed in item-recognition experiments.
View Article and Find Full Text PDFThe problem of interslice magnetic resonance (MR) image reconstruction arises in a broad range of medical applications. In such cases, there is a need to approximate information present in the original subject that is not reflected in contiguously acquired MR images because of hardware sampling limitations. In the context of vascular morphology reconstruction, this information is required in order for subsequent visualization and computational analysis of blood vessels to be most effective.
View Article and Find Full Text PDF