The R403Q mutation of human cardiac β-myosin heavy chain was the first missense mutation of a sarcomeric protein identified as being causal for hypertrophic cardiomyopathy (HCM), in humans. The direct effect of the R403Q mutant myosin on intracellular calcium homeostasis and contractility is not fully known. Here we have used gene transfer of the R403Q mutant human β-myosin to study its direct effects on single intact adult cardiac myocyte contractility and calcium homeostasis.
View Article and Find Full Text PDFHuman induced pluripotent stem cells and their differentiation into cardiac myocytes (hiPSC-CMs) provides a unique and valuable platform for studies of cardiac muscle structure-function. This includes studies centered on disease etiology, drug development, and for potential clinical applications in heart regeneration/repair. Ultimately, for these applications to achieve success, a thorough assessment and physiological advancement of the structure and function of hiPSC-CMs is required.
View Article and Find Full Text PDFSevere dysfunction in cardiac muscle intracellular Ca2+ handling is a common pathway underlying heart failure. Here we used an inducible genetic model of severe Ca2+ cycling dysfunction by the targeted temporal gene ablation of the cardiac Ca2+ ATPase, SERCA2, in otherwise normal adult mice. In this model, in vivo heart performance was minimally affected initially, even though Serca2a protein was markedly reduced.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a severe, progressive, and ultimately fatal disease of skeletal muscle wasting, respiratory insufficiency, and cardiomyopathy. The identification of the dystrophin gene as central to DMD pathogenesis has led to the understanding of the muscle membrane and the proteins involved in membrane stability as the focal point of the disease. The lessons learned from decades of research in human genetics, biochemistry, and physiology have culminated in establishing the myriad functionalities of dystrophin in striated muscle biology.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is caused by the lack of dystrophin, a cytoskeletal protein essential for the preservation of the structural integrity of the muscle cell membrane. DMD patients develop severe skeletal muscle weakness, degeneration, and early death. We tested here amphiphilic synthetic membrane stabilizers in mdx skeletal muscle fibers (flexor digitorum brevis; FDB) to determine their effectiveness in restoring contractile function in dystrophin-deficient live skeletal muscle fibers.
View Article and Find Full Text PDFFirst-in-class membrane stabilizer Poloxamer 188 (P188) has been shown to confer membrane protection in an extensive range of clinical conditions; however, elements of the systemic distribution and localization of P188 at the organ, tissue, and muscle fiber levels have not yet been elucidated. Here we used non-invasive fluorescence imaging to directly visualize and track the distribution and localization of P188 . The results demonstrated that the Alx647 probe did not alter the fundamental properties of P188 to protect biological membranes.
View Article and Find Full Text PDFThe cardiac sarcomere is a triumph of biological evolution wherein myriad contractile and regulatory proteins assemble into a quasi-crystalline lattice to serve as the central point upon which cardiac muscle contraction occurs. This review focuses on the many signaling components and mechanisms of regulation that impact cardiac sarcomere function. We highlight the roles of the thick and thin filament, both as necessary structural and regulatory building blocks of the sarcomere as well as targets of functionally impactful modifications.
View Article and Find Full Text PDFThe sarcomere is the functional unit of skeletal muscle, essential for proper contraction. Numerous acquired and inherited myopathies impact sarcomere function causing clinically significant disease. Mechanistic investigations of sarcomere activation have been challenging to undertake in the context of intact, live skeletal muscle fibers during real time physiological twitch contractions.
View Article and Find Full Text PDFJ Mol Cell Cardiol
September 2022
Recent advances the cardiac biomedical sciences have been propelled forward by the development and implementation of human iPSC-derived cardiac muscle. These notable successes notwithstanding, it is well recognized in the field that a major roadblock persists in the lack of full "adult cardiac muscle-like" maturation of hiPSC-CMs. This Perspective centers focus on maturation roadblocks in the essential physiological unit of muscle, the sarcomere.
View Article and Find Full Text PDFCachexia is a muscle wasting syndrome occurring in many advanced cancer patients. Cachexia significantly increases cancer morbidity and mortality. Cardiac atrophy and contractility deficits have been observed in patients and in animal models with cancer cachexia, which may contribute to cachexia pathophysiology.
View Article and Find Full Text PDFIn the failing heart, the cardiac myocyte microtubule network is remodeled, which contributes to cellular contractile failure and patient death. However, the origins of this deleterious cytoskeletal reorganization are unknown. We now find that oxidative stress, a condition characteristic of heart failure, leads to cysteine oxidation of microtubules.
View Article and Find Full Text PDFThe NO-sGC-cGMP signaling pathway plays an important role in the cardiovascular system. Loss of nitric oxide tone or impaired signaling has been associated with cardiovascular diseases, such as hypertension, pulmonary hypertension and heart failure. Direct activation of sGC enzyme independent of NO represents a novel approach for modulating NO signaling with tremendous therapeutic potential.
View Article and Find Full Text PDFThe sarcomere is the functional unit of cardiac muscle, essential for normal heart function. To date, it has not been possible to study, in real time, thin filament-based activation dynamics in live cardiac muscle. We report here results from a cardiac troponin C (TnC) FRET-based biosensor integrated into the cardiac sarcomere via stoichiometric replacement of endogenous TnC.
View Article and Find Full Text PDFWe sought here to induce the excision of a large intragenic segment within the intact dystrophin gene locus, with the ultimate goal to elucidate dystrophin protein function and stability in striated muscles in vivo. To this end, we implemented an inducible-gene excision methodology using a floxed allele approach, demarcated by dystrophin exons 2-79, in complementation with a cardiac and skeletal muscle directed gene deletion system for spatial-temporal control of dystrophin gene excision in vivo. Main findings of this study include evidence of significant intact dystrophin gene excision, ranging from ~ 25% in heart muscle to ~ 30-35% in skeletal muscles in vivo.
View Article and Find Full Text PDFAdvancing maturation of stem cell-derived cardiac muscle represents a major barrier to progress in cardiac regenerative medicine. Cardiac muscle maturation involves a myriad of gene, protein, and cell-based transitions, spanning across all aspects of cardiac muscle form and function. We focused here on a key developmentally controlled transition in the cardiac sarcomere, the functional unit of the heart.
View Article and Find Full Text PDFMaintaining the integrity of cell membranes is indispensable for cellular viability. Poloxamer 188 (P188), a poly(ethylene oxide)--poly(propylene oxide)--poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer with a number-average molecular weight of 8700 g/mol and containing 80% by mass PEO, protects cell membranes from various external injuries and has the potential to be used as a therapeutic agent in diverse applications. The membrane protection mechanism associated with P188 is intimately connected with how this block copolymer interacts with the lipid bilayer, the main component of a cell membrane.
View Article and Find Full Text PDFBackground: Duchenne muscular dystrophy (DMD) is caused by the loss of dystrophin. Severe and ultimately lethal, DMD progresses relatively slowly in that patients become wheelchair bound only around age twelve with a survival expectancy reaching the third decade of life.
Methods: The mildly-affected mdx mouse model of DMD, and transgenic DysΔMTB-mdx and Fiona-mdx mice expressing dystrophin or utrophin, respectively, were exposed to either mild (scruffing) or severe (subordination stress) stress paradigms and profiled for their behavioral and physiological responses.
The lipid headgroup plays an important role in the association of polymers with lipid bilayer membranes. Herein, we report how a glycerol headgroup versus a choline headgroup affects the interaction of poly(ethylene oxide)--poly(propylene oxide) (PEO-PPO) block copolymers with lipid bilayer vesicles. Unilamellar vesicles composed of phosphatidylcholine and phosphatidylglycerol at various molar ratios were used as model membranes.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is an X-linked recessive disease resulting in the loss of dystrophin, a key cytoskeletal protein in the dystrophin-glycoprotein complex. Dystrophin connects the extracellular matrix with the cytoskeleton and stabilizes the sarcolemma. Cardiomyopathy is prominent in adolescents and young adults with DMD, manifesting as dilated cardiomyopathy (DCM) in the later stages of disease.
View Article and Find Full Text PDFThere is a growing need for operational oceanographic predictions in both the Arctic and Antarctic polar regions. In the former, this is driven by a declining ice cover accompanied by an increase in maritime traffic and exploitation of marine resources. Oceanographic predictions in the Antarctic are also important, both to support Antarctic operations and also to help elucidate processes governing sea ice and ice shelf stability.
View Article and Find Full Text PDFInteractions of nonionic poly(ethylene oxide)- b-poly(propylene oxide) (PEO-PPO) block copolymers, known as Pluronics or poloxamers, with cell membranes have been widely studied for a host of biomedical applications. Herein, we report how cholesterol within phosphatidylcholine (POPC) lipid bilayer liposomes and bilayer curvature affects the binding of several PPO-PEO-PPO triblocks with varying PPO content and a tPPO-PEO diblock, where t refers to a tert-butyl end group. Pulsed-field-gradient NMR was employed to quantify the extent of copolymer associated with liposomes prepared with cholesterol concentrations ranging from 0 to 30 mol % relative to the total content of POPC and cholesterol and vesicle extrusion radii of 25, 50, or 100 nm.
View Article and Find Full Text PDFThe phospholipid bilayer membrane that surrounds each cell in the body represents the first and last line of defense for preserving overall cell viability. In several forms of cardiac and skeletal muscle disease, deficits in the integrity of the muscle membrane play a central role in disease pathogenesis. In Duchenne muscular dystrophy, an inherited and uniformly fatal disease of progressive muscle deterioration, muscle membrane instability is the primary cause of disease, including significant heart disease, for which there is no cure or highly effective treatment.
View Article and Find Full Text PDFNucleic acid - protein interactions are critical for regulating gene activation in the nucleus. In the cytoplasm, however, potential nucleic acid-protein functional interactions are less clear. The emergence of a large and expanding number of non-coding RNAs and DNA fragments raises the possibility that the cytoplasmic nucleic acids may interact with cytoplasmic cellular components to directly alter key biological processes within the cell.
View Article and Find Full Text PDFAtmospheric rivers (ARs) cause heavy precipitation and flooding in the coastal areas of many mid-latitude continents, and thus the atmospheric processes associated with the AR have been intensively studied in recent years. However, AR-associated ocean variability and air-sea fluxes have received little attention because of the lack of high-resolution ocean data until recently. Here we demonstrate that typical ARs can generate strong upper ocean response and substantial air-sea fluxes using a high-resolution (1/12°) ocean reanalysis.
View Article and Find Full Text PDFHeart failure is the leading cause of combined morbidity and mortality in the USA with 50% of cases being diastolic heart failure. Diastolic heart failure results from poor myocardial relaxation and inadequate filling of the left ventricular chamber caused in part by calcium-handling dysregulation. In this chapter we describe methods to investigate new approaches of novel human Ca binding protein motifs to restore normal Ca handling function to diseased myocardium.
View Article and Find Full Text PDF