Zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) provide powerful platforms for genome editing in plants and animals. Typically, a single nuclease is sufficient to disrupt the function of protein-coding genes through the introduction of microdeletions or insertions that cause frameshifts within an early coding exon. However, interrogating the function of cis-regulatory modules or noncoding RNAs in many instances requires the excision of this element from the genome.
View Article and Find Full Text PDFCys2-His2 zinc finger proteins (ZFPs) are the largest group of transcription factors in higher metazoans. A complete characterization of these ZFPs and their associated target sequences is pivotal to fully annotate transcriptional regulatory networks in metazoan genomes. As a first step in this process, we have characterized the DNA-binding specificities of 129 zinc finger sets from Drosophila using a bacterial one-hybrid system.
View Article and Find Full Text PDFZinc-finger nucleases (ZFNs) allow targeted gene inactivation in a wide range of model organisms. However, construction of target-specific ZFNs is technically challenging. Here, we evaluate a straightforward modular assembly-based approach for ZFN construction and gene inactivation in zebrafish.
View Article and Find Full Text PDFMelanoma is the deadliest form of skin cancer, with no cure for advanced disease. We propose a strategy for melanoma prevention based on using analogs of alpha-melanocyte stimulating hormone (alpha-MSH) that function as melanocortin 1 receptor (MC1R) agonists. Treatment of human melanocytes with alpha-MSH results in stimulation of eumelanin synthesis, reduction of apoptosis that is attributable to reduced hydrogen peroxide generation and enhanced repair of DNA photoproducts.
View Article and Find Full Text PDFExpression of the agouti signaling protein (ASIP) during hair growth produces the red/yellow pigment pheomelanin. ASIP, and its neuropeptide homolog the agouti-related protein (AgRP) involved in energy balance, are novel, paracrine signaling molecules that act as inverse agonists at distinct subsets of melanocortin receptors. Ubiquitous ASIP expression in mice gives rise to a pleiotropic phenotype characterized by a uniform yellow coat color, obesity, overgrowth, and metabolic derangements similar to type II diabetes in humans.
View Article and Find Full Text PDFThe agouti-related protein (AGRP) is an endogenous antagonist of the melanocortin receptors MC3R and MC4R found in the hypothalamus and exhibits potent orexigenic activity. The cysteine-rich C-terminal domain of this protein, corresponding to AGRP(87-132), exhibits receptor binding affinity and antagonism equivalent to that of the full-length protein. The NMR structure of this active domain was recently determined and suggested that melanocortin receptor contacts were made primarily by two loops presented by a well-structured cystine knot domain within AGRP(87-132) [McNulty et al.
View Article and Find Full Text PDF