Publications by authors named "Joseph McCown"

Article Synopsis
  • - The MET receptor is crucial for various biological processes, but its dysregulation is linked to cancers like non-small cell lung cancer and renal cancer, highlighting a significant medical need for better treatment options.
  • - Current MET inhibitors face challenges such as resistance and toxicity, particularly in treating brain metastases, which further emphasizes the demand for improved therapies.
  • - Researchers are developing a new class of MET inhibitors designed to effectively target brain tumors and specific cancer mutations, which showed promising results in preclinical models, significantly extending survival in treated animals.
View Article and Find Full Text PDF

Mutant BRAF is one of the most common oncogenic drivers in metastatic melanoma. While first generation BRAF inhibitors are capable of controlling tumors systemically, they are unable to adequately treat tumors that have metastasized to the brain due to insufficient penetration across the blood-brain barrier (BBB). Through a combination of structure-based drug design (SBDD) and the optimization of physiochemical properties to enhance BBB penetration, we herein report the discovery of the brain-penetrant BRAF inhibitor () In mice studies, proved to be highly brain-penetrant and was able to drive regressions of A375 BRAF tumors implanted both subcutaneously and intracranially.

View Article and Find Full Text PDF

SHP2 has emerged as an important target for oncology small-molecule drug discovery. As a nonreceptor tyrosine phosphatase within the MAPK pathway, it has been shown to control cell growth, differentiation, and oncogenic transformation. We used structure-based design to find a novel class of potent and orally bioavailable SHP2 inhibitors.

View Article and Find Full Text PDF

The ability of Mycobacterium tuberculosis (Mtb) to persist in its host may enable an evolutionary advantage for drug resistant variants to emerge. A potential strategy to prevent persistence and gain drug efficacy is to directly target the activity of enzymes that are crucial for persistence. We present a method for expedited discovery and structure-based design of lead compounds by targeting the hypoxia-associated enzyme L-alanine dehydrogenase (AlaDH).

View Article and Find Full Text PDF