The use of oncolytic viruses (OVs) and adoptive cell therapies (ACT) have independently emerged as promising approaches for cancer immunotherapy. More recently, the combination of such agents to obtain a synergistic anticancer effect has gained attention, particularly in solid tumors, where immune-suppressive barriers of the microenvironment remain a challenge for desirable therapeutic efficacy. While adoptive cell monotherapies may be restricted by an immunologically cold or suppressive tumor microenvironment (TME), OVs can serve to prime the TME by eliciting a wave of cancer-specific immunogenic cell death and inducing enhanced antitumor immunity.
View Article and Find Full Text PDFMultiple myeloma (MM) is a hematological malignancy of plasma cells that remains incurable despite significant progress with myeloablative regimens and autologous stem cell transplantation for eligible patients and, more recently with T cell redirected immunotherapy. Recently, we reported that virotherapy with oncolytic myxoma virus (MYXV) improved MM-free survival in an autologous-transplant Balb/c mouse model. Here, we tested the Vk*MYC transplantable C57BL/6 mouse MM model that more closely recapitulates human disease.
View Article and Find Full Text PDFMultiple myeloma (MM) is a hematological malignancy of monoclonal plasma cells that remains incurable. Standard treatments for MM include myeloablative regimens and autologous cell transplantation for eligible patients. A major challenge of these treatments is the relapse of the disease due to residual MM in niches that become refractory to treatments.
View Article and Find Full Text PDF