Interactions between proteins and α-helical peptides have been the focus of drug discovery campaigns. However, the large interfaces formed between multiple turns of an α-helix and a binding protein represent a significant challenge to inhibitor discovery. Modified peptides featuring helix-stabilizing macrocycles have shown promise as inhibitors of these interactions.
View Article and Find Full Text PDFThe sirtuins are NAD -dependent lysine deacylases, comprising seven isoforms (SIRT1-7) in humans, which are involved in the regulation of a plethora of biological processes, including gene expression and metabolism. The sirtuins share a common hydrolytic mechanism but display preferences for different ϵ-N-acyllysine substrates. SIRT7 deacetylates targets in nuclei and nucleoli but remains one of the lesser studied of the seven isoforms, in part due to a lack of chemical tools to specifically probe SIRT7 activity.
View Article and Find Full Text PDFUbiquitin is a small, globular protein that is conjugated to other proteins as a posttranslational event. A palette of small, folded domains recognizes and binds ubiquitin to translate and effectuate this posttranslational signal. Recent computational studies have suggested that protein regions can recognize ubiquitin via a process of folding upon binding.
View Article and Find Full Text PDFCancer and other disease states can change the landscape of proteins post-translationally tagged with ubiquitin (Ub) chains. Molecules capable of modulating Ub chains are potential therapeutic agents, but their discovery represents a significant challenge. Recently, it was shown that cyclic peptides, selected from trillion-member random libraries, are capable of binding particular Ub chains.
View Article and Find Full Text PDFCatalysis of human phosphoglycerate mutase is dependent on a 2,3-bisphosphoglycerate cofactor (dPGM), whereas the nonhomologous isozyme in many parasitic species is cofactor independent (iPGM). This mechanistic and phylogenetic diversity offers an opportunity for selective pharmacologic targeting of glycolysis in disease-causing organisms. We previously discovered ipglycermide, a potent inhibitor of iPGM, from a large combinatorial cyclic peptide library.
View Article and Find Full Text PDFFront Mol Biosci
June 2020
Many proteins and peptides fold upon binding another protein. Mutagenesis has proved an essential tool in the study of these multi-step molecular recognition processes. By comparing the biophysical behavior of carefully selected mutants, the concert of interactions and conformational changes that occur during folding and binding can be separated and assessed.
View Article and Find Full Text PDFRibosomal peptide synthesis begins almost exclusively with the amino acid methionine, across all domains of life. The ubiquity of methionine initiation raises the question; to what extent could polypeptide synthesis be realized with other amino acids, proteinogenic or otherwise? This highlight describes the breadth of building blocks now known to be accepted by the ribosome initiation machinery, from subtle methionine analogues to large exotic non-proteinogenic structures. We outline the key methodological developments that have enabled these discoveries, including the exploitation of methionyl-tRNA synthetase promiscuity, synthetase and tRNA engineering, and the utilization of artificial tRNA-loading ribozymes, flexizymes.
View Article and Find Full Text PDFMessenger RNA display of peptides containing non-proteinogenic amino acids, referred to as RaPID system, has become one of the leading methods to express libraries consisting of more than trillion-members of macrocyclic peptides, which allows for discovering de novo bioactive ligands. Ideal macrocyclic peptides should have dissociation constants (K ) as low as single-digit values in the nanomolar range towards a specific target of interest. Here, a twofold strategy to discover optimized macrocyclic peptides within this affinity regime is described.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2020
Derivatives of 4-aminomethyl-l-phenylalanine with aromatic oligoamide foldamers as sidechain appendages were successfully charged on tRNA by means of flexizymes. Their subsequent incorporation both at the C-terminus of, and within, peptide sequences by the ribosome, was demonstrated. These results expand the registry of chemical structures tolerated by the ribosome to sidechains significantly larger and more structurally defined than previously demonstrated.
View Article and Find Full Text PDFA promising approach in cancer therapy is to find ligands that directly bind ubiquitin (Ub) chains. However, finding molecules capable of tightly and specifically binding Ub chains is challenging given the range of Ub polymer lengths and linkages and their subtle structural differences. Here, we use total chemical synthesis of proteins to generate highly homogeneous Ub chains for screening against trillion-member macrocyclic peptide libraries (RaPID system).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2018
In the version of this Article originally published, in Fig.1f there was an erroneous 'Gly-Gly' label placed above the foldamer-peptide structure. Furthermore, in Fig.
View Article and Find Full Text PDFTranslation, the mRNA-templated synthesis of peptides by the ribosome, can be manipulated to incorporate variants of the 20 cognate amino acids. Such approaches for expanding the range of chemical entities that can be produced by the ribosome may accelerate the discovery of molecules that can perform functions for which poorly folded, short peptidic sequences are ill suited. Here, we show that the ribosome tolerates some artificial helical aromatic oligomers, so-called foldamers.
View Article and Find Full Text PDFWe describe a procedure for designing proteins with backbones produced by varying the parameters in the Crick coiled coil-generating equations. Combinatorial design calculations identify low-energy sequences for alternative helix supercoil arrangements, and the helices in the lowest-energy arrangements are connected by loop building. We design an antiparallel monomeric untwisted three-helix bundle with 80-residue helices, an antiparallel monomeric right-handed four-helix bundle, and a pentameric parallel left-handed five-helix bundle.
View Article and Find Full Text PDFProtein-protein interactions are at the heart of regulatory and signaling processes in the cell. In many interactions, one or both proteins are disordered before association. However, this disorder in the unbound state does not prevent many of these proteins folding to a well-defined, ordered structure in the bound state.
View Article and Find Full Text PDFMany cellular proteins are 'disordered' in isolation. A subset of these intrinsically disordered proteins (IDPs) can, upon binding another molecule, fold to a well-defined three-dimensional structure. In the structurally heterogeneous, unbound ensemble of these IDPs, conformations are likely to exist that, in part, resemble the final bound form.
View Article and Find Full Text PDFCoupled folding and binding of intrinsically disordered proteins (IDPs) is prevalent in biology. As the first step toward understanding the mechanism of binding, it is important to know if a reaction is 'diffusion-limited' as, if this speed limit is reached, the association must proceed through an induced fit mechanism. Here, we use a model system where the 'BH3 region' of PUMA, an IDP, forms a single, contiguous α-helix upon binding the folded protein Mcl-1.
View Article and Find Full Text PDFThe elongated three-helix-bundle spectrin domains R16 and R17 fold and unfold unusually slowly over a rough energy landscape, in contrast to the homologue R15, which folds fast over a much smoother, more typical landscape. R15 folds via a nucleation-condensation mechanism that guides the docking of the A and C-helices. However, in R16 and R17, the secondary structure forms first and the two helices must then dock in the correct register.
View Article and Find Full Text PDFThe elongated three-helix bundle domains spectrin R16 and R17 fold some two to three orders of magnitude more slowly than their homologue R15. We have shown that this slow folding is due, at least in part, to roughness in the free-energy landscape of R16 and R17. We have proposed that this roughness is due to a frustrated search for the correct docking of partly preformed helices.
View Article and Find Full Text PDFThe study of the folding of single domains, in the context of their multidomain environment, is important because more than 70% of eukaryotic proteins are composed of multiple domains. The structures of the tandem immunoglobulin (Ig) domain pairs A164-A165 and A168-A169, from the A-band of the giant muscle protein titin, reveal that they form tightly associated domain arrangements, connected by a continuous β-strand. We investigate the thermodynamic and kinetic properties of these tandem domain pairs.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2010
Structures that contain a knot formed by the path of the polypeptide backbone represent some of the most complex topologies observed in proteins. How or why these topological knots arise remains unclear. By developing a method to experimentally trap and detect knots in nonnative polypeptide chains, we find that two knotted methyltransferases, YibK and YbeA, can exist in a trefoil-knot conformation even in their chemically unfolded states.
View Article and Find Full Text PDFExperiments were conducted to study CCA-treated wood combustion over a range of temperature and oxygen concentrations with a view to understanding the factors affecting energy and metals recovery from waste treated timber. CCA-treated wood was burned in a furnace at temperatures from 400 to 940 degrees C and oxygen concentrations between 5 and 21%. The ash and condensed volatiles were digested for total concentrations of metals and subjected to leaching tests to determine the stabilized concentrations of metals.
View Article and Find Full Text PDFSeveral small molecules identified by high-throughput screening (HTS) were evaluated for their ability to bind to a nonstructural protein 3 (NS3) helicase from hepatitis C virus (HCV). Equilibrium dissociation constants (K(d)'s) of the compounds for this helicase were determined using several techniques including an assay measuring the kinetics of isothermal enzyme denaturation at several concentrations of the test molecule. Effects of two nonhydrolyzable ATP analogs on helicase denaturation were measured as controls using the isothermal denaturation (ITD) assay.
View Article and Find Full Text PDF