Publications by authors named "Joseph M Muretta"

Article Synopsis
  • Notch is important for development and diseases, leading researchers to create inhibitors using small molecules and antibodies.* -
  • A novel nanobody was developed to inhibit Notch signaling, showing effectiveness in laboratory assays despite a low affinity for the Notch target.* -
  • By linking the nanobody to a toxin-derived membrane domain, researchers improved its potency, successfully inhibiting cancer cell proliferation similar to existing Notch blockers.*
View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a lethal muscle disease caused by the absence of the protein dystrophin. Dystrophin is hypothesized to work as a molecular shock absorber that limits myofiber membrane damage when undergoing reversible unfolding upon muscle stretching and contraction. Utrophin is a dystrophin homologue that is under investigation as a protein replacement therapy for DMD.

View Article and Find Full Text PDF

The type II class of RAF inhibitors currently in clinical trials paradoxically activate BRAF at subsaturating concentrations. Activation is mediated by induction of BRAF dimers, but why activation rather than inhibition occurs remains unclear. Using biophysical methods tracking BRAF dimerization and conformation, we built an allosteric model of inhibitor-induced dimerization that resolves the allosteric contributions of inhibitor binding to the two active sites of the dimer, revealing key differences between type I and type II RAF inhibitors.

View Article and Find Full Text PDF

The type II class of RAF inhibitors currently in clinical trials paradoxically activate BRAF at subsaturating concentrations. Activation is mediated by induction of BRAF dimers, but why activation rather than inhibition occurs remains unclear. Using biophysical methods tracking BRAF dimerization and conformation we built an allosteric model of inhibitor-induced dimerization that resolves the allosteric contributions of inhibitor binding to the two active sites of the dimer, revealing key differences between type I and type II RAF inhibitors.

View Article and Find Full Text PDF

Unlabelled: Fatty acid binding protein 4 (FABP4) is a secreted adipokine linked to obesity and progression of a variety of cancers. Obesity increases extracellular FABP4 (eFABP4) levels in animal models and in obese breast cancer patients compared with lean healthy controls. Using MCF-7 and T47D breast cancer epithelial cells, we show herein that eFABP4 stimulates cellular proliferation in a time and concentration dependent manner while the non-fatty acid-binding mutant, R126Q, failed to potentiate growth.

View Article and Find Full Text PDF

Duchenne muscular dystrophy is a lethal muscle wasting disease caused by the absence of the protein dystrophin. Utrophin is a dystrophin homologue currently under investigation as a protein replacement therapy for Duchenne muscular dystrophy. Dystrophin is hypothesized to function as a molecular shock absorber that mechanically stabilizes the sarcolemma.

View Article and Find Full Text PDF

Duchenne muscular dystrophy is a lethal muscle disease, caused by mutations in the gene encoding dystrophin, an actin-binding cytoskeletal protein. Absence of functional dystrophin results in muscle weakness and degeneration, eventually leading to cardiac and respiratory failure. Strategies to replace the missing dystrophin via gene therapy have been intensively pursued.

View Article and Find Full Text PDF

The interacting-heads motif (IHM) is a structure of myosin that has been proposed to modulate cardiac output by occluding myosin molecules from undergoing the force-generating cycle. It is hypothesized to be the structural basis for the super-relaxed state (SRX), a low-ATPase kinetic state thought to be cardioprotective. The goal of the present study was to test this hypothesis by determining directly and quantitatively the fractions of myosin in the IHM and SRX under the same conditions in solution.

View Article and Find Full Text PDF

Cyclin-dependent kinases (CDKs) are the master regulators of the eukaryotic cell cycle. To become activated, CDKs require both regulatory phosphorylation and binding of a cognate cyclin subunit. We studied the activation process of the G1/S kinase Cdk2 in solution and developed a thermodynamic model that describes the allosteric coupling between regulatory phosphorylation, cyclin binding and inhibitor binding.

View Article and Find Full Text PDF

In the nucleus, the spatiotemporal regulation of the catalytic subunit of cAMP-dependent protein kinase A (PKA-C) is orchestrated by an intrinsically disordered protein kinase inhibitor, PKI, which recruits the CRM1/RanGTP nuclear exporting complex. How the PKA-C/PKI complex assembles and recognizes CRM1/RanGTP is not well understood. Using NMR, SAXS, fluorescence, metadynamics, and Markov model analysis, we determined the multi-state recognition pathway for PKI.

View Article and Find Full Text PDF

Protein kinases undergo large-scale structural changes that tightly regulate function and control recognition by small-molecule inhibitors. Methods for quantifying the conformational effects of inhibitors and linking them to an understanding of selectivity patterns have long been elusive. We have developed an ultrafast time-resolved fluorescence methodology that tracks structural movements of the kinase activation loop in solution with angstrom-level precision, and can resolve multiple structural states and quantify conformational shifts between states.

View Article and Find Full Text PDF

Myosins are molecular motors that use a conserved ATPase cycle to generate force. We investigated two mutations in the converter domain of myosin V (R712G and F750L) to examine how altering specific structural transitions in the motor ATPase cycle can impair myosin mechanochemistry. The corresponding mutations in the human β-cardiac myosin gene are associated with hypertrophic and dilated cardiomyopathy, respectively.

View Article and Find Full Text PDF

We used transient biochemical and structural kinetics to elucidate the molecular mechanism of mavacamten, an allosteric cardiac myosin inhibitor and a prospective treatment for hypertrophic cardiomyopathy. We find that mavacamten stabilizes an autoinhibited state of two-headed cardiac myosin not found in the single-headed S1 myosin motor fragment. We determined this by measuring cardiac myosin actin-activated and actin-independent ATPase and single-ATP turnover kinetics.

View Article and Find Full Text PDF

Many eukaryotic protein kinases are activated by phosphorylation on a specific conserved residue in the regulatory activation loop, a post-translational modification thought to stabilize the active DFG-In state of the catalytic domain. Here we use a battery of spectroscopic methods that track different catalytic elements of the kinase domain to show that the ~100 fold activation of the mitotic kinase Aurora A (AurA) by phosphorylation occurs without a population shift from the DFG-Out to the DFG-In state, and that the activation loop of the activated kinase remains highly dynamic. Instead, molecular dynamics simulations and electron paramagnetic resonance experiments show that phosphorylation triggers a switch within the DFG-In subpopulation from an autoinhibited DFG-In substate to an active DFG-In substate, leading to catalytic activation.

View Article and Find Full Text PDF

Numerous posttranslational modifications have been described in kinesins, but their consequences on motor mechanics are largely unknown. We investigated one of these-acetylation of lysine 146 in Eg5-by creating an acetylation mimetic lysine to glutamine substitution (K146Q). Lysine 146 is located in the α2 helix of the motor domain, where it makes an ionic bond with aspartate 91 on the neighboring α1 helix.

View Article and Find Full Text PDF

MKLP2, a kinesin-6, has critical roles during the metaphase-anaphase transition and cytokinesis. Its motor domain contains conserved nucleotide binding motifs, but is divergent in sequence (~35% identity) and size (~40% larger) compared to other kinesins. Using cryo-electron microscopy and biophysical assays, we have undertaken a mechanochemical dissection of the microtubule-bound MKLP2 motor domain during its ATPase cycle, and show that many facets of its mechanism are distinct from other kinesins.

View Article and Find Full Text PDF

Omecamtiv mecarbil (OM), a putative heart failure therapeutic, increases cardiac contractility. We hypothesize that it does this by changing the structural kinetics of the myosin powerstroke. We tested this directly by performing transient time-resolved FRET on a ventricular cardiac myosin biosensor.

View Article and Find Full Text PDF

A robust high-throughput screening (HTS) strategy has been developed to discover small-molecule effectors targeting the sarco/endoplasmic reticulum calcium ATPase (SERCA), based on a fluorescence microplate reader that records both the nanosecond decay waveform (lifetime mode) and the complete emission spectrum (spectral mode), with high precision and speed. This spectral unmixing plate reader (SUPR) was used to screen libraries of small molecules with a fluorescence resonance energy transfer (FRET) biosensor expressed in living cells. Ligand binding was detected by FRET associated with structural rearrangements of green fluorescent protein (GFP, donor) and red fluorescent protein (RFP, acceptor) fused to the cardiac-specific SERCA2a isoform.

View Article and Find Full Text PDF

Kinesins perform mechanical work to power a variety of cellular functions, from mitosis to organelle transport. Distinct functions shape distinct enzymologies, and this is illustrated by comparing kinesin-1, a highly processive transport motor that can work alone, to Eg5, a minimally processive mitotic motor that works in large ensembles. Although crystallographic models for both motors reveal similar structures for the domains involved in mechanochemical transduction--including switch-1 and the neck linker--how movement of these two domains is coordinated through the ATPase cycle remains unknown.

View Article and Find Full Text PDF

A principal goal of molecular biophysics is to show how protein structural transitions explain physiology. We have developed a strategic tool, transient time-resolved FRET [(TR)(2)FRET], for this purpose and use it here to measure directly, with millisecond resolution, the structural and biochemical kinetics of muscle myosin and to determine directly how myosin's power stroke is coupled to the thermodynamic drive for force generation, actin-activated phosphate release, and the weak-to-strong actin-binding transition. We find that actin initiates the power stroke before phosphate dissociation and not after, as many models propose.

View Article and Find Full Text PDF

Myosins use a conserved structural mechanism to convert the energy from ATP hydrolysis into a large swing of the force-generating lever arm. The precise timing of the lever arm movement with respect to the steps in the actomyosin ATPase cycle has not been determined. We have developed a FRET system in myosin V that uses three donor-acceptor pairs to examine the kinetics of lever arm swing during the recovery and power stroke phases of the ATPase cycle.

View Article and Find Full Text PDF

We describe a nanosecond time-resolved fluorescence spectrometer that acquires fluorescence decay waveforms from each well of a 384-well microplate in 3 min with signal-to-noise exceeding 400 using direct waveform recording. The instrument combines high-energy pulsed laser sources (5-10 kHz repetition rate) with a photomultiplier and high-speed digitizer (1 GHz) to record a fluorescence decay waveform after each pulse. Waveforms acquired from rhodamine or 5-((2-aminoethyl)amino) naphthalene-1-sulfonic acid dyes in a 384-well plate gave lifetime measurements 5- to 25-fold more precise than the simultaneous intensity measurements.

View Article and Find Full Text PDF

Members of the kinesin superfamily of molecular motors differ in several key structural domains, which probably allows these molecular motors to serve the different physiologies required of them. One of the most variable of these is a stem-loop motif referred to as L5. This loop is longest in the mitotic kinesin Eg5, and previous structural studies have shown that it can assume different conformations in different nucleotide states.

View Article and Find Full Text PDF