Comprehensive two-dimensional gas chromatography (GC×GC) is an established technique capable of chromatographically separating thousands of analytes in complex matrices. When coupled with highly sensitive detectors such as a high-resolution mass spectrometer, these instruments produce large multidimensional data sets. A prevailing challenge for GC×GC users is efficient data handling and analysis.
View Article and Find Full Text PDFThis work presents a generalized approach for analytical method optimization that branches the gap between techniques historically employed and accurate modern optimization techniques suitable for various applications. The novelty of the described strategy is the utilization of multivariate, multiobjective optimization with Karush-Kuhn-Tucker conditions to bound the optimization space to solutions within the physical limitations of instrumentation. Briefly, the basic steps outlined in this paper are to (1) determine the objective(s) that should be maximized or minimized based on the goals of the analytical application, (2) conduct a screening experiment, (3) perform ANOVA to determine the parameters which have a statistically significant effect on the objective, (4) conduct an experiment (e.
View Article and Find Full Text PDFMatrix-assisted ionization (MAI) demonstrates high sensitivity for a variety of organic compounds; however, few studies have reported the application of MAI for the detection and characterization of inorganic analytes. Trace-level uranium analysis is important in the realms of nuclear forensics, nuclear safeguards, and environmental monitoring. Traditional mass spectrometry methods employed in these fields require combinations of extensive laboratory chemistry sample preparation and destructive ionization methods.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
November 2019
Rationale: The ability to detect and quantify the presence of specific inorganic elements and complexes is essential for environmental monitoring and nuclear safeguards applications. In this work, paper spray ionization mass spectrometry was used for the rapid chemical and isotopic characterization of trace inorganic species collected on cotton swipe substrates. The direct analysis of cotton swipes using this ambient ionization technique led to fast sample analysis that retained original chemical information of the source material with minimal sample preparation.
View Article and Find Full Text PDFA new sample loading procedure was developed for isotope measurements of ultra-trace amounts of Pu with thermal ionization mass spectrometry (TIMS) that is based on a polymer thin film architecture. The goals were to simplify single filament TIMS sample preparation for Pu, while preserving the sensitivity and accuracy of the resin bead loading method, and to eliminate sample losses experienced with the bead loading method. Rhenium filaments were degassed, dip-coated with a thin (~ 120 nm) hydrophobic base layer of poly(vinylbenzyl chloride) (PVBC), and spotted with an aqueous solution comprising triethylamine-quaternized PVBC and diazabicyclo[2.
View Article and Find Full Text PDFA new sample loading procedure was developed for isotope ratio measurements of ultratrace amounts of plutonium with thermal ionization mass spectrometry (TIMS). The goal was to determine the efficacy of a polymer fiber architecture for TIMS sample loading by following similar sample loading procedures as those used in bead loading. Fibers with diameter of approximately 100 μm were prepared from triethylamine-quaternized-poly(vinylbenzyl chloride) cross-linked with diazabicyclo[2.
View Article and Find Full Text PDFThis communication presents findings on the effect of rhenium filament oxidation on thermal ionization mass spectrometry (TIMS) analyses of plutonium. Additionally, the roles of atmospheric humidity and carburization on the oxidation characteristics (i.e.
View Article and Find Full Text PDFDegassing is a common preparation technique for rhenium filaments used for thermal ionization mass spectrometric analysis of actinides, including plutonium. Although optimization studies regarding degassing conditions have been reported, little work has been done to characterize filament aging after degassing. In this study, the effects of filament aging after degassing were explored to determine a "shelf-life" for degassed rhenium filaments, and methods to limit filament aging were investigated.
View Article and Find Full Text PDFBinary polymer nanoparticles were synthesized by the reprecipitation of poly(4-vinylpyridine) in the presence of poly(diallyldimethylammonium chloride) and further used to make polymer-coated Ag nanoparticles. Polymer shells around Ag nanoparticles were formed by two methods: the reduction of Ag(2)O in the presence of the polymer nanoparticles and by mixing the polymer nanoparticles with already-made Ag nanoparticles. The resulting nanoparticles were coated with layers of the two polymers with the hydrophilic polymer on the outside providing their stability in water.
View Article and Find Full Text PDF