Humans and animals are frequently exposed to PFAS (per- and polyfluoroalkyl substances) through drinking water and food; however, no therapeutic sorbent strategies have been developed to mitigate this problem. Montmorillonites amended with the common nutrients, carnitine and choline, were characterized for their ability to bind 4 representative PFAS (PFOA, PFOS, GenX, and PFBS). Adsorption/desorption isothermal analysis showed that PFOA, PFOS (and a mixture of the two) fit the Langmuir model with high binding capacity, affinity and enthalpy at conditions simulating the stomach.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2019
The oxidation of RNA has been implicated in the development of many diseases. Among the four ribonucleotides, guanosine is the most susceptible to oxidation, resulting in the formation of 8-oxo-7,8-dihydroguanosine (8-oxoG). Despite the limited knowledge about how cells regulate the detrimental effects of oxidized RNA, cellular factors involved in its regulation have begun to be identified.
View Article and Find Full Text PDFFunctional amyloid materials can combine the self-assembly of peptide scaffolds into amyloid fibrils with binding capacities for ions or compounds of pharmaceutical interest, endowed by mutable non-β-sheet-forming residues at the termini. Herein, we report the first to our knowledge amyloid materials, encompassing a GAIIG amyloidogenic core, which bind to Alzheimer's disease (AD) drugs, by mimicking the mechanism by which the same AD drugs bind to enzymes according to experimentally resolved structures, including the target enzyme acetylcholinesterase (AChE). The computationally designed amyloid scaffolds are experimentally shown to coordinate with AD drugs, using two techniques, both in dilute solutions and at higher peptide concentrations, with a higher binding capacity for donepezil and tacrine compared to that for memantine and galantamine.
View Article and Find Full Text PDFThe aggregation of amyloid-β (Aβ) peptides into senile plaques is a hallmark of Alzheimer's disease (AD) and is hypothesized to be the primary cause of AD related neurodegeneration. Previous studies have shown the ability of curcumin to both inhibit the aggregation of Aβ peptides into oligomers or fibrils and reduce amyloids . Despite the promise of curcumin and its derivatives to serve as diagnostic, preventative, and potentially therapeutic AD molecules, the mechanism by which curcumin and its derivatives bind to and inhibit Aβ fibrils' formation remains elusive.
View Article and Find Full Text PDFThe GAIIG sequence, common to the amyloid beta peptide (residues 29-33) and to the HIV-1 gp120 (residues 24-28 in a typical V3 loop), self-assembles into amyloid fibrils, as suggested by theory and the experiments presented here. The longer YATGAIIGNII sequence from the V3 loop also self-assembles into amyloid fibrils, of which the first three and the last two residues are outside the amyloid GAIIG core. We postulate that this sequence, with suitably selected modifications at the flexible positions, can serve as a designable scaffold for novel amyloid-based materials.
View Article and Find Full Text PDF