Publications by authors named "Joseph Lubach"

It is desirable but remains challenging to develop high drug load amorphous solid dispersions (ASDs) without compromising their quality attributes and bio-performance. In this work, we investigated the impacts of formulation variables, such as drug loading (DL) and polymer type, on dissolution behavior, diffusive flux, and in vitro drug absorption of ASDs of a high T compound, GDC-6893. ASDs with two polymers (HPMCAS and PVPVA) and various DLs (20 - 80%) were produced by spray drying and their drug-polymer miscibility was evaluated using solid-state nuclear magnetic resonance (ssNMR).

View Article and Find Full Text PDF
Article Synopsis
  • Participants from 22 research groups utilized various methods, including periodic DFT-D methods, machine learning models, and empirical force fields to assess crystal structures generated from standardized sets.
  • The findings indicate that DFT-D methods generally aligned well with experimental results, while one machine learning approach showed significant promise; however, the need for more efficient research methods was emphasized due to resource consumption.
View Article and Find Full Text PDF

A seventh blind test of crystal structure prediction was organized by the Cambridge Crystallographic Data Centre featuring seven target systems of varying complexity: a silicon and iodine-containing molecule, a copper coordination complex, a near-rigid molecule, a cocrystal, a polymorphic small agrochemical, a highly flexible polymorphic drug candidate, and a polymorphic morpholine salt. In this first of two parts focusing on structure generation methods, many crystal structure prediction (CSP) methods performed well for the small but flexible agrochemical compound, successfully reproducing the experimentally observed crystal structures, while few groups were successful for the systems of higher complexity. A powder X-ray diffraction (PXRD) assisted exercise demonstrated the use of CSP in successfully determining a crystal structure from a low-quality PXRD pattern.

View Article and Find Full Text PDF

A variable or non-stoichiometric hydrate of GDC-4379 was developed into a formulated capsule with a 1% drug loading. The water content of this hydrate varied from 0-0.7 moles over the relative humidity (RH) range of 0-98% (25°C).

View Article and Find Full Text PDF

The incorporation of a counterion into an amorphous solid dispersion (ASD) has been proven to be an attractive strategy to improve the drug dissolution rate. In this work, the generality of enhancing the dissolution rates of free acid ASDs by incorporating sodium hydroxide (NaOH) was studied by surface-area-normalized dissolution. A set of diverse drug molecules, two common polymer carriers (copovidone or PVPVA and hydroxypropyl methylcellulose acetate succinate or HPMCAS), and two sample preparation methods (rotary evaporation and spray drying) were investigated.

View Article and Find Full Text PDF

Asthma is a common chronic disease affecting the airways in the lungs. The receptors of allergic cytokines, including interleukin (IL)-4, IL-5, and IL-13, trigger the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, which involves the pathogenesis of asthma. GDC-0214 is a JAK inhibitor that was developed as a potent and selective target for the treatment of asthma, specifically targeting the lungs.

View Article and Find Full Text PDF

In this work, an amorphous solid dispersion (ASD) formulation was systematically developed to simultaneously enhance bioavailability and mitigate the mechanical instability risk of the selected crystalline form of a development drug candidate, GDC-0334. The amorphous solubility advantage calculation was applied to understand the solubility enhancement potential by an amorphous formulation for GDC-0334, which showed 2.7 times theoretical amorphous solubility advantage.

View Article and Find Full Text PDF

Differentiation of heterocyclic isomers by solution H, C, and N NMR spectroscopy is often challenging due to similarities in their spectroscopic signatures. Here, C{N} solid-state NMR spectroscopy experiments are shown to operate as an "attached nitrogen test", where heterocyclic isomers are easy to distinguish based on one-dimensional nitrogen-filtered C solid-state NMR. We anticipate that these NMR experiments will facilitate the assignment of heterocyclic isomers during synthesis and natural product discovery.

View Article and Find Full Text PDF

In the past 15 years, magic angle spinning (MAS) dynamic nuclear polarization (DNP) has emerged as a method to increase the sensitivity of high-resolution solid-state NMR spectroscopy experiments. Recently, γ-irradiation has been used to generate significant concentrations of homogeneously distributed free radicals in a variety of solids, including quartz, glucose, and cellulose. Both γ-irradiated quartz and glucose previously showed significant MAS DNP enhancements.

View Article and Find Full Text PDF

Spray-drying dispersion (SDD) is a well-established manufacturing technique used to prepare amorphous solid dispersions (ASDs), allowing for poorly soluble drugs to have improved bioavailability. However, the process of spray-drying with multiple factors and numerous variables can lead to a lengthy development timeline with intense resource requirements, which becomes the main obstacle limiting spray-drying development at the preclinical stage. The purpose of this work was to identify optimized preset parameters for spray-drying to support the early development of ASDs suitable for most circumstances rather than individual optimization.

View Article and Find Full Text PDF

Solubility enhancement has become a common requirement for formulation development to deliver poorly water soluble drugs. Amorphous solid dispersions (ASDs) and salt formation have been two successful strategies, yet there are opportunities for further development. For ASDs, drug-polymer phase separation may occur at high drug loadings during dissolution, limiting the increase of drug loadings in ASD formulations.

View Article and Find Full Text PDF

Micronization by air jet milling is often used to produce drug substance particles of acceptable respirable size for use in dry powder inhaler formulations. The energy from this process often induces surface disordered sites on the micronized particles with potential consequences for the long-term stability of the drug substance. In this study, two lots of the same drug substance were qualitatively determined to have different extents of disordered surface using dynamic vapor sorption and scanning electron microscopy.

View Article and Find Full Text PDF

Bruton's tyrosine kinase (Btk) is thought to play a pathogenic role in chronic immune diseases such as rheumatoid arthritis and lupus. While covalent, irreversible Btk inhibitors are approved for treatment of hematologic malignancies, they are not approved for autoimmune indications. In efforts to develop additional series of reversible Btk inhibitors for chronic immune diseases, we sought to differentiate from our clinical stage inhibitor fenebrutinib using cyclopropyl amide isosteres of the 2-aminopyridyl group to occupy the flat, lipophilic H2 pocket.

View Article and Find Full Text PDF

Fast magic-angle spinning (MAS), frequency selective (FS) heteronuclear multiple quantum coherence (HMQC) experiments which function in an analogous manner to solution SOFAST HMQC NMR experiments, are demonstrated. Fast MAS enables efficient FS excitation of H solid-state NMR signals. Selective excitation and observation preserves H magnetization, leading to a significant shortening of the optimal inter-scan delay.

View Article and Find Full Text PDF

Active pharmaceutical ingredients (APIs) can be prepared in many different solid forms and phases that affect their physicochemical properties and suitability for oral dosage forms. The development and commercialization of dosage forms require analytical techniques that can determine and quantify the API phase in the final drug product. C solid-state NMR (SSNMR) spectroscopy is widely employed to characterize pure and formulated solid APIs; however, C SSNMR experiments on dosage forms with low API loading are often challenging due to low sensitivity and interference from excipients.

View Article and Find Full Text PDF

Usage of the amorphous phase of compounds has become the method of choice to overcome oral bioavailability problems related to poor solubility. Due to the unstable nature of glasses, it is clear that the method of preparation of the amorphous glass will have an impact on physical/chemical stability and in turn in vivo performance. The method of preparation can also have a profound impact on the mechanical properties of the amorphous phase.

View Article and Find Full Text PDF

GENE-A, a Nav1.7 inhibitor compound with analgesic activity, was developed as a crystalline anhydrate, for which two polymorphic forms, I and II, were discovered. The two forms were found to possess very similar free energies as determined experimentally with Form II being thermodynamically stable above 25 °C based on solubility measurements.

View Article and Find Full Text PDF

In this study, a multipronged approach of in vitro experiments, in silico simulations, and in vivo studies was developed to evaluate the dissolution, supersaturation, precipitation, and absorption of three formulations of Compound-A, a BCS class 2 weak base with pH-dependent solubility. In in vitro 2-stage dissolution experiments, the solutions were highly supersaturated with no precipitation at the low dose but increasing precipitation at higher doses. No difference in precipitation was observed between the capsules and tablets.

View Article and Find Full Text PDF

Purpose: To investigate the nature of drug-excipient interactions between indomethacin (IMC) and methacrylate copolymer Eudragit® E (EE) in the amorphous state, and evaluate the effects on formulation and stability of these amorphous systems.

Methods: Amorphous solid dispersions containing IMC and EE were spray dried with drug loadings from 20% to 90%. PXRD was used to confirm the amorphous nature of the dispersions, and DSC was used to measure glass transition temperatures (T).

View Article and Find Full Text PDF
Article Synopsis
  • Bruton's tyrosine kinase (Btk) is important for activating B-cells and myeloid cells and may play a role in treating autoimmune diseases like rheumatoid arthritis and lupus.
  • A new drug, GDC-0853, has been developed as a potent, selective, and noncovalent Btk inhibitor that shows promise in preclinical tests.
  • Early studies suggest that GDC-0853 is effective in reducing disease symptoms in rats and shows good safety and effectiveness in ongoing human trials for rheumatoid arthritis, lupus, and chronic spontaneous urticaria.
View Article and Find Full Text PDF

Purpose: Molecular understanding of phase stability and transition of the amorphous state helps in formulation and manufacturing of poorly-soluble drugs. Crystallization of a model compound, 2-phenylamino nicotinic acid (2PNA), from the amorphous state was studied using solid-state analytical methods. Our previous report suggests that 2PNA molecules mainly develop intermolecular -COOH∙∙∙pyridine N (acid-pyridine) interactions in the amorphous state.

View Article and Find Full Text PDF

As the pipeline for poorly soluble compounds continues to grow, drug degradation during melt extrusion must be addressed. We present a novel method for stabilizing a thermally labile drug substance while preserving its physical stability and even improving its dissolution performance. In a previous study, we found that incorporating meglumine during extrusion of meloxicam results in chemical stabilization that cannot be achieved using process optimization alone.

View Article and Find Full Text PDF

We demonstrate that natural isotopic abundance 2D heteronuclear correlation (HETCOR) solid-state NMR spectra can be used to significantly reduce or eliminate the broadening of H and C solid-state NMR spectra of organic solids due to anisotropic bulk magnetic susceptibility (ABMS). ABMS often manifests in solids with aromatic groups, such as active pharmaceutical ingredients (APIs), and inhomogeneously broadens the NMR peaks of all nuclei in the sample. Inhomogeneous peaks with full widths at half maximum (FWHM) of ∼1 ppm typically result from ABMS broadening and the low spectral resolution impedes the analysis of solid-state NMR spectra.

View Article and Find Full Text PDF

In our continued effort to discover and develop best-in-class Bruton's tyrosine kinase (Btk) inhibitors for the treatment of B-cell lymphomas, rheumatoid arthritis, and systemic lupus erythematosus, we devised a series of novel tricyclic compounds that improved upon the druglike properties of our previous chemical matter. Compounds exemplified by are highly potent, selective for Btk, metabolically stable, well tolerated, and efficacious in an animal model of arthritis.

View Article and Find Full Text PDF