Proc Natl Acad Sci U S A
November 2018
The N-glycans attached to the Fab and Fc domains play distinct roles in modulating the functions of antibodies. However, posttranslational site-selective modifications of glycans in antibodies and other multiply glycosylated proteins remain a challenging task. Here, we report a chemoenzymatic method that permits independent manipulation of the Fab and Fc N-glycans, using cetuximab as a model therapeutic monoclonal antibody.
View Article and Find Full Text PDFThe gradient elution hydrophobic interaction chromatography of a monoclonal antibody that exhibits U-shaped retention as a function of the ammonium sulfate concentration is investigated for overloaded conditions at protein loads up to 30% of the column equilibrium binding capacity. Protein load and gradient slope affect both elution peak shape and protein recovery during the gradient. Higher protein loads result in tailing peaks with near 100% recovery that transition to fronting peaks and incomplete recovery as the protein load is reduced.
View Article and Find Full Text PDFProtein retention in hydrophobic interaction chromatography is described by the solvophobic theory as a function of the kosmostropic salt concentration. In general, an increase in salt concentration drives protein partitioning to the hydrophobic surface while a decrease reduces it. In some cases, however, protein retention also increases at low salt concentrations resulting in a U-shaped retention factor curve.
View Article and Find Full Text PDFChemoenzymatic synthesis is emerging as a promising approach to the synthesis of homogeneous glycopeptides and glycoproteins highly demanded for functional glycomics studies, but its generality relies on the availability of a range of enzymes with high catalytic efficiency and well defined substrate specificity. We describe in this paper the discovery of glycosynthase mutants derived from Elizabethkingia meningoseptica endoglycosidase F3 (Endo-F3) of the GH18 family, which are devoid of the inherent hydrolytic activity but are able to take glycan oxazolines for transglycosylation. Notably, the Endo-F3 D165A and D165Q mutants demonstrated high acceptorsubstrate specificity toward α1,6-fucosyl-GlcNAc-Asn or α1,6-fucosyl-GlcNAc-polypeptide in transglycosylation, enabling a highly convergent synthesis of core-fucosylated, complex CD52 glycopeptide antigen.
View Article and Find Full Text PDFImmunoglobulin G (IgG) is a central mediator of host defense due to its ability to recognize and eliminate pathogens. The recognition and effector responses are encoded on distinct regions of IgGs. The diversity of the antigen recognition Fab domains accounts for IgG's ability to bind with high specificity to essentially any antigen.
View Article and Find Full Text PDFTo evade host immune mechanisms, many bacteria secrete immunomodulatory enzymes. Streptococcus pyogenes, one of the most common human pathogens, secretes a large endoglycosidase, EndoS, which removes carbohydrates in a highly specific manner from IgG antibodies. This modification renders antibodies incapable of eliciting host effector functions through either complement or Fc γ receptors, providing the bacteria with a survival advantage.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
December 2013
Endoglycosidase S (EndoS) is an enzyme secreted by Streptococcus pyogenes that specifically hydrolyzes the β-1,4-di-N-acetylchitobiose core glycan on immunoglobulin G (IgG) antibodies. One of the most common human pathogens and the cause of group A streptococcal infections, S. pyogenes secretes EndoS in order to evade the host immune system by rendering IgG effector mechanisms dysfunctional.
View Article and Find Full Text PDFA chemoenyzmatic method for direct glycosylation of polypeptides is described. The method consists of two site-specific enzymatic glycosylation steps: introduction of a glucose moiety at the consensus N-glycosylation sequence (NXS/T) in a polypeptide by an N-glycosyltransferase (NGT) and attachment of a complex N-glycan to the glucose primer by an endoglycosidase (ENGase)-catalyzed transglycosylation. Our experiments demonstrated that a relatively small excess of the UDP-Glc (the donor substrate) was sufficient for an effective glucosylation of polypeptides by the NGT, and different high-mannose and complex type N-glycans could be readily transferred to the glucose moiety by ENGases to provide full-size glycopeptides.
View Article and Find Full Text PDFProtein glycosylation is a common and complex posttranslational modification of proteins, which expands functional diversity while boosting structural heterogeneity. Glycoproteins, the end products of such a modification, are typically produced as mixtures of glycoforms possessing the same polypeptide backbone but differing in the site of glycosylation and/or in the structures of pendant glycans, from which single glycoforms are difficult to isolate. The urgent need for glycan-defined glycoproteins in both detailed structure-function relationship studies and therapeutic applications has stimulated an extensive interest in developing various methods for manipulating protein glycosylation.
View Article and Find Full Text PDFThe heparin-binding hemagglutinin adhesin (HBHA) is a surface adhesin on the human pathogen Mycobacterium tuberculosis. Previously, it has been shown that HBHA exists as a dimer in solution. We investigated the detailed nature of this dimer using circular dichroism spectroscopy and analytical ultracentrifugation techniques.
View Article and Find Full Text PDF2,3-Dihydroxybenzohydroxamoyl adenylate (I) was prepared as a potential product analog inhibitor of EntE (EC# 2.7.7.
View Article and Find Full Text PDF