Publications by authors named "Joseph Libby"

Craniosynostosis is a medical condition caused by the early fusion of the cranial joint. The finite element method (FEM) is a computational technique that can answer a variety of "what if" questions in relation to the biomechanics of this condition. The aim of this study was to review the current literature that has used FEM to investigate the biomechanics of any aspect of craniosynostosis, being its development or its reconstruction.

View Article and Find Full Text PDF

The newborn mammalian cranial vault consists of five flat bones that are joined together along their edges by soft fibrous tissues called sutures. Early fusion of these sutures leads to a medical condition known as craniosynostosis. The mechanobiology of normal and craniosynostotic skull growth is not well understood.

View Article and Find Full Text PDF

During postnatal calvarial growth the brain grows gradually and the overlying bones and sutures accommodate that growth until the later juvenile stages. The whole process is coordinated through a complex series of biological, chemical and perhaps mechanical signals between various elements of the craniofacial system. The aim of this study was to investigate to what extent a computational model can accurately predict the calvarial growth in wild-type (WT) and mutant type (MT) Fgfr2 mice displaying bicoronal suture fusion.

View Article and Find Full Text PDF

During the first year of life, the brain grows rapidly and the neurocranium increases to about 65% of its adult size. Our understanding of the relationship between the biomechanical forces, especially from the growing brain, the craniofacial soft tissue structures and the individual bone plates of the skull vault is still limited. This basic knowledge could help in the future planning of craniofacial surgical operations.

View Article and Find Full Text PDF