Objective: To evaluate the effects of the anticoagulant betrixaban on individual heart rate-corrected QT (QTcI).
Research Design And Methods: Ninety-six healthy adults were randomly assigned to single-dose betrixaban 80 and 140 mg (therapeutic and supratherapeutic doses, respectively), placebo, and moxifloxacin 400 mg (positive control) in a four-period crossover study. Electrocardiograms were recorded at pre-dose and post-dose hours 1, 2, 3, 4, 5, 6, 8, 12, 16 and 24.
Systematic SAR studies of in vitro factor Xa inhibitory activity around compound 1 were performed by modifying each of the three phenyl rings. A class of highly potent, selective, efficacious and orally bioavailable direct factor Xa inhibitors was discovered. These compounds were screened in hERG binding assays to examine the effects of substitution groups on the hERG channel affinity.
View Article and Find Full Text PDFA class of N,N-dialkylated 4-(4-arylsulfonylpiperazine-1-carbonyl)-benzamidines and 4-((4-arylsulfonyl)-2-oxo-piperazin-1-ylmethyl)-benzamidines has been discovered as potent factor Xa inhibitors with desirable in vitro and in vivo anticoagulant activity, but with low oral bioavailability. The 5-chloroindole and 6-chlorobenzo[b]thiophene groups are optimal as the factor Xa S1 binding elements. The strategy of incorporating a side chain on the piperazine nucleus to enhance binding affinity has been examined.
View Article and Find Full Text PDFIn our efforts to develop orally active GPIIb-IIIa antagonists with improved pharmaceutical properties, we have utilized a novel 2,8-diazaspiro[4.5]decane scaffold as a template. We describe here our investigation of a variety of templates including spiropiperidinyl-gamma-lactams, spiropiperidinylimide, spiropiperidinylureas, and spiropiperidinylhydantoins.
View Article and Find Full Text PDFCompound 2 containing an aminomethylbenzoyl moiety as the S4 binding motif was synthesized in order to modulate hydrophlicity of anthranilamide-based factor Xa inhibitors with substituted biphenyl P4 groups. Structure-activity relationship studies around 2 have led to a series of potent factor Xa inhibitors which are highly active in the human plasma-based thrombin generation assay with 2XTG values less than 1 microM. Compound 55 shows strong antithrombotic activity in our rabbit deep vein thrombosis model, and also exhibits good oral bioavailability and a long half life in rats.
View Article and Find Full Text PDFAnthranilamides 4 and 5 were designed and synthesized as selective and orally bioavailable factor Xa inhibitors. Structural modifications aimed at lowering their lipophilicity were performed at the central phenyl ring and at the S4 binding biphenyl region by incorporating water solublizing substituents. The resulting compounds (e.
View Article and Find Full Text PDFUsing N,N-dialkylated benzamidines as the novel P4 motifs, we have designed and synthesized a class of 1-(2-naphthyl)-1H-pyrazole-5-carboxylamides as highly potent and selective fXa inhibitors with significantly improved hydrophilicity and in vitro anticoagulant activity. These benzamidine-P4 fXa inhibitors have displayed excellent oral bioavailability and long half-life.
View Article and Find Full Text PDFWe have previously found that the 4-[4-(N-substituted carbamoyl)-1-piperazinyl]-6,7-dimethoxyquinazolines can function as potent and selective inhibitors of platelet-derived growth factor receptor (PDGFR) phosphorylation. A series of highly potent, specific, orally active, small molecule kinase inhibitors directed against members of PDGFR receptor have been developed through modifications of the novel quinazoline template I. Systematic modifications in the A-bicyclic ring and D-rings of protype I were carried out to afford potent analogues, which display IC(50) values of <250 nM in cellular betaPDGFR phosphorylation assays.
View Article and Find Full Text PDF