Predicting phenotypes from a combination of genetic and environmental factors is a grand challenge of modern biology. Slight improvements in this area have the potential to save lives, improve food and fuel security, permit better care of the planet, and create other positive outcomes. In 2022 and 2023 the first open-to-the-public Genomes to Fields (G2F) initiative Genotype by Environment (GxE) prediction competition was held using a large dataset including genomic variation, phenotype and weather measurements and field management notes, gathered by the project over nine years.
View Article and Find Full Text PDFObjectives: The Genomes to Fields (G2F) 2022 Maize Genotype by Environment (GxE) Prediction Competition aimed to develop models for predicting grain yield for the 2022 Maize GxE project field trials, leveraging the datasets previously generated by this project and other publicly available data.
Data Description: This resource used data from the Maize GxE project within the G2F Initiative [1]. The dataset included phenotypic and genotypic data of the hybrids evaluated in 45 locations from 2014 to 2022.
Objectives: This report provides information about the public release of the 2018-2019 Maize G X E project of the Genomes to Fields (G2F) Initiative datasets. G2F is an umbrella initiative that evaluates maize hybrids and inbred lines across multiple environments and makes available phenotypic, genotypic, environmental, and metadata information. The initiative understands the necessity to characterize and deploy public sources of genetic diversity to face the challenges for more sustainable agriculture in the context of variable environmental conditions.
View Article and Find Full Text PDFAccurate prediction of the phenotypic outcomes produced by different combinations of genotypes, environments, and management interventions remains a key goal in biology with direct applications to agriculture, research, and conservation. The past decades have seen an expansion of new methods applied toward this goal. Here we predict maize yield using deep neural networks, compare the efficacy of 2 model development methods, and contextualize model performance using conventional linear and machine learning models.
View Article and Find Full Text PDFSignificanceProteins are the machinery which execute essential cellular functions. However, measuring their abundance within an organism can be difficult and resource-intensive. Cells use a variety of mechanisms to control protein synthesis from mRNA, including short open reading frames (uORFs) that lie upstream of the main coding sequence.
View Article and Find Full Text PDFIt has been just over a decade since the release of the maize () Nested Association Mapping (NAM) population. The NAM population has been and continues to be an invaluable resource for the maize genetics community and has yielded insights into the genetic architecture of complex traits. The parental lines have become some of the most well-characterized maize germplasm, and their de novo assemblies were recently made publicly available.
View Article and Find Full Text PDFObjectives: Advanced tools and resources are needed to efficiently and sustainably produce food for an increasing world population in the context of variable environmental conditions. The maize genomes to fields (G2F) initiative is a multi-institutional initiative effort that seeks to approach this challenge by developing a flexible and distributed infrastructure addressing emerging problems. G2F has generated large-scale phenotypic, genotypic, and environmental datasets using publicly available inbred lines and hybrids evaluated through a network of collaborators that are part of the G2F's genotype-by-environment (G × E) project.
View Article and Find Full Text PDFUse of a single reference genome for genome-wide association studies (GWAS) limits the gene space represented to that of a single accession. This limitation can complicate identification and characterization of genes located within presence-absence variations (PAVs). In this study, we present the draft de novo genome assembly of 'PHJ89', an 'Oh43'-type inbred line of maize ( L.
View Article and Find Full Text PDFDeconvolution of the genetic architecture underlying yield is critical for understanding bases of genetic gain in species of agronomic importance. To dissect the genetic components of yield in potato, we adopted a reference-based recombination map composed of four segregating alleles from an interspecific pseudotestcross F potato population ( = 90). Approximately 1.
View Article and Find Full Text PDFBackground: Maize stover is an important source of crop residues and a promising sustainable energy source in the United States. Stalk is the main component of stover, representing about half of stover dry weight. Characterization of genetic determinants of stalk traits provide a foundation to optimize maize stover as a biofuel feedstock.
View Article and Find Full Text PDFIncreasing popularity of high-throughput phenotyping technologies, such as image-based phenotyping, offer novel ways for quantifying plant growth and morphology. These new methods can be more or less accurate and precise than traditional, manual measurements. Many large-scale phenotyping efforts are conducted to enable genome-wide association studies (GWAS), but it is unclear exactly how alternative methods of phenotyping will affect GWAS results.
View Article and Find Full Text PDFInflorescence capacity plays a crucial role in reproductive fitness in plants, and in production of hybrid crops. Maize is a monoecious species bearing separate male and female flowers (tassel and ear, respectively). The switch from open-pollinated populations of maize to hybrid-based breeding schemes in the early 20th century was accompanied by a dramatic reduction in tassel size, and the trend has continued with modern breeding over the recent decades.
View Article and Find Full Text PDFRemarkable productivity has been achieved in crop species through artificial selection and adaptation to modern agronomic practices. Whether intensive selection has changed the ability of improved cultivars to maintain high productivity across variable environments is unknown. Understanding the genetic control of phenotypic plasticity and genotype by environment (G × E) interaction will enhance crop performance predictions across diverse environments.
View Article and Find Full Text PDFBackground: The maize male inflorescence (tassel) produces pollen necessary for reproduction and commercial grain production of maize. The size of the tassel has been linked to factors affecting grain yield, so understanding the genetic control of tassel architecture is an important goal. Tassels are fragile and deform easily after removal from the plant, necessitating rapid measurement of any shape characteristics that cannot be retained during storage.
View Article and Find Full Text PDF