Unlabelled: Prediction of movement intentions from electromyographic (EMG) signals is typically performed with a pattern recognition approach, wherein a short dataframe of raw EMG is compressed into an instantaneous feature-encoding that is meaningful for classification. However, EMG signals are time-varying, implying that a frame-wise approach may not sufficiently incorporate temporal context into predictions, leading to erratic and unstable prediction behavior.
Objective: We demonstrate that sequential prediction models and, specifically, temporal convolutional networks are able to leverage useful temporal information from EMG to achieve superior predictive performance.
The human body is a template for many state-of-the-art prosthetic devices and sensors. Perceptions of touch and pain are fundamental components of our daily lives that convey valuable information about our environment while also providing an element of protection from damage to our bodies. Advances in prosthesis designs and control mechanisms can aid an amputee's ability to regain lost function but often lack meaningful tactile feedback or perception.
View Article and Find Full Text PDFMyoelectric signal patterns can be used to predict the intended movements of amputees for prosthesis activation. Real-world prosthesis use introduces a variety of unpredictable conditional influences on these patterns, hindering the performance of classification algorithms and potentially leading to device abandonment. We have discovered a state-of-the-art classification method which is significantly more tolerant to these conditional influences.
View Article and Find Full Text PDFUnlabelled: Myoelectric signals can be used to predict the intended movements of an amputee for prosthesis control. However, untrained effects like limb position changes influence myoelectric signal characteristics, hindering the ability of pattern recognition algorithms to discriminate among motion classes. Despite frequent and long training sessions, these deleterious conditional influences may result in poor performance and device abandonment.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2016
The fundamental objective in non-invasive myoelectric prosthesis control is to determine the user's intended movements from corresponding skin-surface recorded electromyographic (sEMG) activation signals as quickly and accurately as possible. Linear Discriminant Analysis (LDA) has emerged as the de facto standard for real-time movement classification due to its ease of use, calculation speed, and remarkable classification accuracy under controlled training conditions. However, performance of cluster-based methods like LDA for sEMG pattern recognition degrades significantly when real-world testing conditions do not resemble the trained conditions, limiting the utility of myoelectrically controlled prosthesis devices.
View Article and Find Full Text PDF