Although severe cases and mortality of coronavirus disease 2019 (COVID-19) are proportionally infrequent, these cases are strongly linked to patients with conditions of metabolic syndrome (obesity, hypertension, diabetes, and dyslipidemia). However, the pathophysiology of COVID-19 in relation to metabolic syndrome is not well understood. Thus, the goal of this secondary literature review was to examine the relationship between severe acute respiratory syndrome (SARS-CoV-2) infection and the individual conditions of metabolic syndrome.
View Article and Find Full Text PDFBackground We assessed a new robotic visualization platform with novel user-control features and compared its performance to the previous model of operative microscope. Methods In a neurosurgery research laboratory, we performed anatomical dissections and assessed robotic, exoscopic, endoscopic, fluorescence functionality. Usability and functionality were tested in the operating room over 1 year.
View Article and Find Full Text PDFObjective: To compare transcallosal-transchoroidal and transcallosal-subchoroidal approaches to the ipsilateral and contralateral edges of the floor of the third ventricle using quantitative analyses.
Methods: Five formalin-fixed cadaveric human heads (10 sides) were examined under the operating microscope. Quantitative measurements (area of surgical freedom and angle of attack) were obtained using 3-T magnetic resonance imaging and a StealthStation image guidance system.
1-Deoxy-d-xylulose 5-phosphate (DXP) synthase catalyzes the thiamin diphosphate (ThDP)-dependent formation of DXP from pyruvate and d-glyceraldehyde 3-phosphate. DXP is at a metabolic branch point in bacteria, feeding into the methylerythritol phosphate pathway to indispensable isoprenoids and acting as a precursor for biosynthesis of essential cofactors in central metabolism, pyridoxal phosphate and ThDP, the latter of which is also required for DXP synthase catalysis. DXP synthase follows a unique random sequential mechanism and possesses an unusually large active site.
View Article and Find Full Text PDF