Publications by authors named "Joseph Krahn"

Article Synopsis
  • Spatial judgement bias tests (JBTs) assess an animal's expectation of reward based on their approach to ambiguous locations between rewarded and unrewarded bowls, reflecting their level of 'optimism' and potential welfare.
  • A study involving 16 companion dogs tested whether a learning treatment (different discrimination trials) would impact their 'optimism' in a subsequent JBT.
  • The results indicated that the additional discrimination trials did not change the dogs' approach latencies to ambiguous locations, suggesting that their 'optimism' remained unaffected by the learning treatment.
View Article and Find Full Text PDF

Dairy cows compete for feed and water access on commercial farms. In this study we used EloSteepness to assess the summed Elo winning probabilities (i.e.

View Article and Find Full Text PDF

Access to brushes allows for natural scratching behaviors in cattle, especially in confined indoor settings. Cattle are motivated to use brushes, but brush use varies with multiple factors including social hierarchy and health. Brush use might serve an indicator of cow health or welfare, but practical application of these measures requires accurate and automated monitoring tools.

View Article and Find Full Text PDF
Article Synopsis
  • Dominance hierarchies in dairy cows help reduce conflict and allocate access to resources, but their structure may change based on competition levels.
  • During a study involving 48 lactating dairy cows over 10 months, researchers monitored agonistic interactions at feed bins, finding that competition for fresh feed primarily influenced these interactions.
  • As feeder occupancy increased, the dominance hierarchy became less steep, indicating that higher competition resulted in more instances of dominant cows losing ground to their challengers.
  • The results suggest that the dynamics of hierarchical behavior in dairy cows are significantly shaped by the amount of competition they face for food resources.
View Article and Find Full Text PDF

Group-housed cattle may engage in agonistic interactions over resources such as feed, which can negatively affect aspects of welfare. Little is known about how contextual factors such as group size influence agonistic behaviour. We explored the frequency of agonistic interactions at the feeder when cattle were housed in different-sized groups.

View Article and Find Full Text PDF

Mechanical brushes are often provided on dairy farms to facilitate grooming. However, current brush designs do not provide data on their use, and thus little is known about the effects of group size and placement of brushes within the pen. The objectives of this study were to automatically detect brush use in cow groups and to investigate the influence of (1) group size and the corresponding cow-to-brush ratio and (2) brush placement in relation to the lying stalls and the feeding and drinking areas.

View Article and Find Full Text PDF

Cattle are gregarious animals able to form social relationships. Dominance is one of the most widely studied social behaviors of dairy cattle, especially cows confined indoors. However, much of the past dairy cattle research has used an unstandardized approach, differing in definitions and conceptual understanding of dominance, as well as their methods of data collection and dominance calculation.

View Article and Find Full Text PDF

An animal's social position within a group can influence its ability to perform important behaviours like eating and resting, but little is known about how social position affects the ability to express what are arguably less important but still rewarding behaviors, such as grooming. We set out to assess if dominance measured at the feeder is associated with increased use of a mechanical brush. Over a 2-year period, 161 dry cows were enrolled in a dynamically changing group of 20 individuals with access to a mechanical brush.

View Article and Find Full Text PDF

The role of ADAM-8 in cancer and inflammatory diseases such as allergy, arthritis and asthma makes it an attractive target for drug development. Therefore, the catalytic domain of human ADAM-8 was expressed, purified and crystallized in complex with a hydroxamic acid inhibitor, batimastat. The crystal structure of the enzyme-inhibitor complex was refined to 2.

View Article and Find Full Text PDF

Heparin is a polysaccharide-based natural product that is used clinically as an anticoagulant drug. Heparan sulfate 3-O-sulfotransferase (3-OST) is an enzyme that transfers a sulfo group to the 3-OH position of a glucosamine unit. 3-OST is present in multiple isoforms, and the polysaccharides modified by these different isoforms perform distinct biological functions.

View Article and Find Full Text PDF
Article Synopsis
  • The final stage of DNA repair involves stitching together broken strands to create a continuous double helix.
  • In mammalian cells, this process is primarily executed by ligase III-α, which is always associated with a protein called XRCC1, relying on specific interactions between their BRCT domain structures.
  • The study presents new findings on the structures of both homodimer and heterodimer complexes, highlighting how an extended binding area in the XRCC1 BRCT domain influences the preference for heterodimer formation, which is crucial for DNA repair.
View Article and Find Full Text PDF

Methionine residues fulfill a broad range of roles in protein function related to conformational plasticity, ligand binding, and sensing/mediating the effects of oxidative stress. A high degree of internal mobility, intrinsic detection sensitivity of the methyl group, and low copy number have made methionine labeling a popular approach for NMR investigation of selectively labeled protein macromolecules. However, selective labeling approaches are subject to more limited information content.

View Article and Find Full Text PDF

Group 5 allergens from house dust mites elicit strong IgE antibody binding in mite-allergic patients. The structure of Der p 5 was determined by x-ray crystallography to better understand the IgE epitopes, to investigate the biologic function in mites, and to compare with the conflicting published Blo t 5 structures, designated 2JMH and 2JRK in the Protein Data Bank. Der p 5 is a three-helical bundle similar to Blo t 5, but the interactions of the helices are more similar to 2JMH than 2JRK.

View Article and Find Full Text PDF

A single regulatory protein can control the fate of many mRNAs with related functions. The Puf3 protein of Saccharomyces cerevisiae is exemplary, as it binds and regulates more than 100 mRNAs that encode proteins with mitochondrial function. Here we elucidate the structural basis of that specificity.

View Article and Find Full Text PDF

Family X polymerases such as DNA polymerase lambda (Pol lambda) are well suited for filling short gaps during DNA repair because they simultaneously bind both the 5' and 3' ends of short gaps. DNA binding and gap filling are well characterized for 1-nucleotide (nt) gaps, but the location of yet-to-be-copied template nucleotides in longer gaps is unknown. Here we present crystal structures revealing that, when bound to a 2-nt gap, Pol lambda scrunches the template strand and binds the additional uncopied template base in an extrahelical position within a binding pocket that comprises three conserved amino acids.

View Article and Find Full Text PDF

RNA molecules undergo local conformational dynamics on timescales spanning picoseconds to minutes. Slower local motions have the greater potential to govern RNA folding, ligand recognition, and ribonucleoprotein assembly reactions but are difficult to detect in large RNAs with complex structures. RNA SHAPE chemistry employs acylation of the ribose 2'-hydroxyl position to measure local nucleotide flexibility in RNA and is well-characterized by a mechanism in which each nucleotide samples unreactive (closed) and reactive (open) states.

View Article and Find Full Text PDF

Type II dihydrofolate reductase (DHFR) is a plasmid-encoded enzyme that confers resistance to bacterial DHFR-targeted antifolate drugs. It forms a symmetric homotetramer with a central pore which functions as the active site. Its unusual structure, which results in a promiscuous binding surface that accommodates either the dihydrofolate (DHF) substrate or the NADPH cofactor, has constituted a significant limitation to efforts to understand its substrate specificity and reaction mechanism.

View Article and Find Full Text PDF

The incorporation of dNMPs into DNA by polymerases involves a phosphoryl transfer reaction hypothesized to require two divalent metal ions. Here we investigate this hypothesis using as a model human DNA polymerase lambda (Pol lambda), an enzyme suggested to be activated in vivo by manganese. We report the crystal structures of four complexes of human Pol lambda.

View Article and Find Full Text PDF

Objective: Cyclooxygenase-1 (COX-1, PTGS1) catalyzes the conversion of arachidonic acid to prostaglandin H2, which is subsequently metabolized to various biologically active prostaglandins. We sought to identify and characterize the functional relevance of genetic polymorphisms in PTGS1.

Methods: Sequence variations in human PTGS1 were identified by resequencing 92 healthy individuals (24 African, 24 Asian, 24 European/Caucasian, and 20 anonymous).

View Article and Find Full Text PDF

The molecular details of the nucleotidyl transferase reaction have remained speculative, as strategies to trap catalytic intermediates for structure determination utilize substrates lacking the primer terminus 3'-OH and catalytic Mg2+, resulting in an incomplete and distorted active site geometry. Since the geometric arrangement of these essential atoms will impact chemistry, structural insight into fidelity strategies has been hampered. Here, we present a crystal structure of a precatalytic complex of a DNA polymerase with bound substrates that include the primer 3'-OH and catalytic Mg2+.

View Article and Find Full Text PDF

Insertions and deletions in coding sequences can alter the reading frame of genes and have profound biological consequences. In 1966, Streisinger proposed that these mutations result from strand slippage, which in repetitive sequences generates misaligned intermediates stabilized by correct base pairing that support polymerization. We report here crystal structures of human DNA polymerase lambda, which frequently generates deletion mutations, bound to such intermediates.

View Article and Find Full Text PDF

Ribose 2'-amine substitutions are broadly useful as structural probes in nucleic acids. In addition, structure-selective chemical reaction at 2'-amine groups is a robust technology for interrogating local nucleotide flexibility and conformational changes in RNA and DNA. We analyzed crystal structures for several RNA duplexes containing 2'-amino cytidine (C(N)) residues that form either C(N)-G base pairs or C(N)-A mismatches.

View Article and Find Full Text PDF

A large number of biochemical and genetic studies have demonstrated the involvement of DNA polymerase beta (Pol beta) in mammalian base excision repair (BER). Pol beta participates in BER sub-pathways by contributing gap filling DNA synthesis and lyase removal of the 5'-deoxyribose phosphate (dRP) group from the cleaved abasic site. To better understand the mechanism of the dRP lyase reaction at an atomic level, we determined a crystal structure of Pol beta complexed with 5'-phosphorylated abasic sugar analogs in nicked DNA.

View Article and Find Full Text PDF

LAGLIDADG endonucleases bind across adjacent major grooves via a saddle-shaped surface and catalyze DNA cleavage. Some LAGLIDADG proteins, called maturases, facilitate splicing by group I introns, raising the issue of how a DNA-binding protein and an RNA have evolved to function together. In this report, crystallographic analysis shows that the global architecture of the bI3 maturase is unchanged from its DNA-binding homologs; in contrast, the endonuclease active site, dispensable for splicing facilitation, is efficiently compromised by a lysine residue replacing essential catalytic groups.

View Article and Find Full Text PDF

Pol lambda is a family X member believed to fill short gaps during DNA repair. Here we report crystal structures of Pol lambda representing three steps in filling a single-nucleotide gap. These structures indicate that, unlike other DNA polymerases, Pol lambda does not undergo large subdomain movements during catalysis, and they provide a clear characterization of the geometry and stereochemistry of the in-line nucleotidyl transfer reaction.

View Article and Find Full Text PDF