Publications by authors named "Joseph Kerckhoff"

Quantum computation features known examples of hardware acceleration for certain problems, but is challenging to realize because of its susceptibility to small errors from noise or imperfect control. The principles of fault tolerance may enable computational acceleration with imperfect hardware, but they place strict requirements on the character and correlation of errors. For many qubit technologies, some challenges to achieving fault tolerance can be traced to correlated errors arising from the need to control qubits by injecting microwave energy matching qubit resonances.

View Article and Find Full Text PDF

Quantum computation requires qubits that satisfy often-conflicting criteria, which include long-lasting coherence and scalable control. One approach to creating a suitable qubit is to operate in an encoded subspace of several physical qubits. Although such encoded qubits may be particularly susceptible to leakage out of their computational subspace, they can be insensitive to certain noise processes and can also allow logical control with a single type of entangling interaction while maintaining favourable features of the underlying physical system.

View Article and Find Full Text PDF

We introduce a method for breaking Lorentz reciprocity based upon the noncommutation of frequency conversion and delay. The method requires no magnetic materials or resonant physics, allowing for the design of scalable and broadband nonreciprocal circuits. With this approach, two types of gyrators-universal building blocks for linear, nonreciprocal circuits-are constructed.

View Article and Find Full Text PDF

We investigate a nonlinear coherent feedback circuit constructed from preexisting superconducting microwave devices. The network exhibits emergent bistable and astable states, and we demonstrate its operation as a latch and the frequency locking of its oscillations. While the network is tedious to model by hand, our observations agree quite well with the semiclassical dynamical model produced by a new software package (N.

View Article and Find Full Text PDF

Broadband homodyne detection of the light transmitted by a Fabry-Perot cavity containing a strongly-coupled (133)Cs atom is used to probe the dynamic optical response in a regime where semiclassical theory predicts bistability but strong quantum corrections should apply. While quantum fluctuations destabilize true equilibrium bistability, our observations confirm the existence of metastable states with finite lifetimes and a hysteretic response is apparent when the optical drive is modulated on comparable timescales. Our experiment elucidates remnant semiclassical behavior in the attojoule (~10 photon) regime of single-atom cavity QED, of potential significance for ultra-low power photonic signal processing.

View Article and Find Full Text PDF

We use a single 133Cs atom strongly coupled to an optical resonator to induce random binary phase modulation of a near infra-red, ∼ 500 pW laser beam, with each modulation edge caused by the dissipation of a single photon (≈ 0.23 aJ) by the atom. While our ability to deterministically induce phase edges with an additional optical control beam is limited thus far, theoretical analysis of an analogous, solid-state system indicates that efficient external control should be achievable in demonstrated nanophotonic systems.

View Article and Find Full Text PDF

We propose an approach to quantum error correction based on coding and continuous syndrome readout via scattering of coherent probe fields, in which the usual steps of measurement and discrete restoration are replaced by direct physical processing of the probe beams and coherent feedback to the register qubits. Our approach is well matched to physical implementations that feature solid-state qubits embedded in planar electromagnetic circuits, providing an autonomous and "on-chip" quantum memory design requiring no external clocking or control logic.

View Article and Find Full Text PDF

Contemporary experiments in cavity quantum electrodynamics (cavity QED) with gas-phase neutral atoms rely increasingly on laser cooling and optical, magneto-optical or magnetostatic trapping methods to provide atomic localization with sub-micron uncertainty. Difficult to achieve in free space, this goal is further frustrated by atom-surface interactions if the desired atomic placement approaches within several hundred nanometers of a solid surface, as can be the case in setups incorporating monolithic dielectric optical resonators such as microspheres, microtoroids, microdisks or photonic crystal defect cavities. Typically in such scenarios, the smallest atom-surface separation at which the van der Waals interaction can be neglected is taken to be the optimal localization point for associated trapping schemes, but this sort of conservative strategy generally compromises the achievable cavity QED coupling strength.

View Article and Find Full Text PDF