Publications by authors named "Joseph Kao"

Article Synopsis
  • Age-related hearing loss (presbycusis) affects sound processing, with different impacts on males and females due to changes in both peripheral and central auditory systems.
  • This study examined how the auditory cortex microcircuits in young and aged CBA/CaJ mice differ, finding that aged male mice show reduced inhibitory and excitatory connections within auditory layers.
  • The observed changes in excitatory and inhibitory circuits suggest a potential link to the age-related decline in hearing abilities, highlighting the need to understand these sex-specific circuit differences further.
View Article and Find Full Text PDF
Article Synopsis
  • Primaquine and Tafenoquine are the only drugs that can cure malaria completely, but they pose risks for individuals with G6PD deficiency, potentially causing severe blood cell damage.
  • The study introduces a new mouse model replicating a specific human G6PD variant, allowing researchers to observe how a metabolite called 5,6-POQ affects red blood cells.
  • The research indicates that 5,6-POQ is not just a harmless byproduct of drug metabolism but actively contributes to the destruction of older red blood cells in G6PD-deficient individuals, challenging previous assumptions about its role.
View Article and Find Full Text PDF

Oxidative stress can damage tissues and cells, and their resilience or susceptibility depends on the robustness of their antioxidant mechanisms. The latter include small molecules, proteins, and enzymes, which are linked together in metabolic pathways. Red blood cells are particularly susceptible to oxidative stress due to their large number of hemoglobin molecules, which can undergo auto-oxidation.

View Article and Find Full Text PDF

Purpose: Oxidative stress is proposed to be critical in acute lung disease, but methods to monitor radicals in lungs are lacking. Our goal is to develop low-frequency electron paramagnetic resonance (EPR) methods to monitor radicals that contribute to the disease.

Procedures: Free radicals generated in a lipopolysaccharide-induced mouse model of acute respiratory distress syndrome reacted with cyclic hydroxylamines CPH (1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine hydrochloride) and DCP-AM-H (4-acetoxymethoxycarbonyl-1-hydroxy-2,2,5,5-tetramethylpyrrolidine-3-carboxylic acid), which were converted into the corresponding nitroxide radicals, CP• and DCP•.

View Article and Find Full Text PDF

Among low-molecular-weight thiols, glutathione (GSH) is the main antioxidant in the cell, and its concentration is an indicator of the redox status. A cyclic disulfide-linked dinitroxide was designed for monitoring GSH by electron-paramagnetic resonance (EPR) spectroscopy. Reaction of the disulfide with GSH and three other thiols was measured at 9.

View Article and Find Full Text PDF

Sensory perturbation in one modality results in the adaptive reorganization of neural pathways within the spared modalities, a phenomenon known as "crossmodal plasticity," which has been examined during or after the classic "critical period." Because peripheral perturbations can alter the auditory cortex (ACX) activity and functional connectivity of the ACX subplate neurons (SPNs) even before the critical period, called the precritical period, we investigated if retinal deprivation at birth crossmodally alters the ACX activity and SPN circuits during the precritical period. We deprived newborn mice of visual inputs after birth by performing bilateral enucleation.

View Article and Find Full Text PDF

Purpose: Patients with hyper- vs. hypo-inflammatory subphenotypes of acute respiratory distress syndrome (ARDS) exhibit different clinical outcomes. Inflammation increases the production of reactive oxygen species (ROS) and increased ROS contributes to the severity of illness.

View Article and Find Full Text PDF

Sensory perturbation in one modality results in adaptive reorganization of neural pathways within the spared modalities, a phenomenon known as "crossmodal plasticity", which has been examined during or after the classic 'critical period'. Because peripheral perturbations can alter auditory cortex (ACX) activity and functional connectivity of the ACX subplate neurons (SPNs) even before the classic critical period, called the precritical period, we investigated if retinal deprivation at birth crossmodally alters ACX activity and SPN circuits during the precritical period. We deprived newborn mice of visual inputs after birth by performing bilateral enucleation.

View Article and Find Full Text PDF

A common impairment in aging is age-related hearing loss (presbycusis), which manifests as impaired spectrotemporal processing. Aging is accompanied by alteration in normal inhibitory (GABA) neurotransmission, and changes in excitatory (NMDA and AMPA) synapses in the auditory cortex (ACtx). However, the circuits affected by these synaptic changes remain unknown.

View Article and Find Full Text PDF

Fundamental to the application of tissue redox status to human health is the quantification and localization of tissue redox abnormalities and oxidative stress and their correlation with the severity and local extent of disease to inform therapy. The centrality of the low-molecular-weight thiol, glutathione, in physiological redox balance has long been appreciated, but direct measurement of tissue thiol status has not been possible hitherto. Recent advances in instrumentation and molecular probes suggest the feasibility of real-time redox assessment in humans.

View Article and Find Full Text PDF

Neurons in the cerebral cortex form excitatory and inhibitory circuits with specific laminar locations. The mechanisms underlying the development of these spatially specific circuits is not fully understood. To test if postsynaptic N-methyl-D-aspartate (NMDA) receptors on excitatory neurons are required for the development of specific circuits to these neurons, we genetically ablated NMDA receptors from a subset of excitatory neurons in the temporal association cortex (TeA) through in utero electroporation and assessed the intracortical circuits connecting to L5 neurons through in vitro whole-cell patch clamp recordings coupled with laser-scanning photostimulation (LSPS).

View Article and Find Full Text PDF

Transport of bile acids within the enterohepatic circulation from the liver to the intestines via the gallbladder and back to the liver via the portal vein plays a critical role in bile acid regulation and homeostasis. Deficiency of fibroblast growth factor 19 (FGF19), a hormone whose role is to suppress de novo hepatic bile acid synthesis to maintain homeostatic levels, results in bile acid diarrhea (BAD). FGF19 also modulates gallbladder motility so that bile acids are concentrated in the gallbladder until postprandial contraction.

View Article and Find Full Text PDF

Opioid use by pregnant women results in neonatal opioid withdrawal syndrome (NOWS) and lifelong neurobehavioral deficits including language impairments. Animal models of NOWS show impaired performance in a two-tone auditory discrimination task, suggesting abnormalities in sensory processing in the auditory cortex. To investigate the consequences of perinatal opioid exposure on auditory cortex circuits, we administered fentanyl to mouse dams in their drinking water throughout gestation and until litters were weaned at postnatal day (P)21.

View Article and Find Full Text PDF

Cortical layer 1 (L1) contains a diverse population of interneurons that can modulate processing in superficial cortical layers, but the intracortical sources of synaptic input to these neurons and how these inputs change over development and with sensory experience is unknown. We here investigated the changing intracortical connectivity to L1 in the primary auditory cortex (A1) of mice of both sexes in slices across development using laser-scanning photostimulation. Before postnatal day (P)10, L1 cells receive excitatory input from within L1, L2/3, L4, and L5/6 as well as from subplate.

View Article and Find Full Text PDF

Sensory deprivation from the periphery impacts cortical development. Otoferlin deficiency leads to impaired cochlear synaptic transmission and is associated with progressive hearing loss in adults. However, it remains elusive how sensory deprivation due to otoferlin deficiency impacts the early development of the auditory cortex (ACX) especially before the onset of low threshold hearing.

View Article and Find Full Text PDF

The connection between early brain injury and subsequent development of disorders is unknown. Neonatal hypoxia-ischemia (HI) alters circuits associated with subplate neurons (SPNs). SPNs are among the first maturing cortical neurons, project to thalamorecipient layer 4 (L4), and are required for the development of thalamocortical connections.

View Article and Find Full Text PDF

Cortical function can be shaped by sensory experience during a critical period. The onset of the critical period is thought to coincide with the onset of thalamocortical transmission to the thalamo-recipient layer 4 (L4). In early development, subplate neurons (SPNs), and not L4 neurons, are the first targets of thalamic afferents.

View Article and Find Full Text PDF

The development of GABAergic interneurons is important for the functional maturation of cortical circuits. After migrating into the cortex, GABAergic interneurons start to receive glutamatergic connections from cortical excitatory neurons and thus gradually become integrated into cortical circuits. These glutamatergic connections are mediated by glutamate receptors including AMPA and NMDA receptors and the ratio of AMPA to NMDA receptors decreases during development.

View Article and Find Full Text PDF

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

View Article and Find Full Text PDF

Regulation of ATP production by mitochondria, critical to multicellular life, is poorly understood. Here we investigate the molecular controls of this process in heart and provide a framework for its Ca-dependent regulation. We find that the entry of Ca into the matrix through the mitochondrial calcium uniporter (MCU) in heart has neither an apparent cytosolic Ca threshold nor gating function and guides ATP production by its influence on the inner mitochondrial membrane (IMM) potential, ΔΨ.

View Article and Find Full Text PDF

During the critical period, neuronal connections are shaped by sensory experience. While the basis for this temporarily heightened plasticity remains unclear, shared connections introducing activity correlations likely play a key role. Thus, we investigated the changing intracortical connectivity in primary auditory cortex (A1) over development.

View Article and Find Full Text PDF

Single-cell metabolic investigations are hampered by the absence of flexible tools to measure local partial pressure of O (pO) at high spatial-temporal resolution. To this end, we developed an optical sensor capable of measuring local pericellular pO for subcellular resolution measurements with confocal imaging while simultaneously carrying out electrophysiological and/or chemo-mechanical single cell experiments. Here we present the OxySplot optrode, a ratiometric fluorescent O-micro-sensor created by adsorbing O-sensitive and O-insensitive fluorophores onto micro-particles of silica.

View Article and Find Full Text PDF

Neonatal hypoxia-ischemia (HI) in the preterm human results in damage to subcortical developing white matter and cognitive impairments. Subplate neurons (SPNs) are among the first-born cortical neurons and are necessary for normal cerebral development. While moderate or severe HI at P1 in rats leads to SPN loss, it is unclear if HI, esp.

View Article and Find Full Text PDF

Many macroscopic properties such as collective chiral responses enhanced by coupled plasmonic nanoparticles require complex nanostructures. However, a key challenge is to directly assemble nanosized building blocks into functional entities with designed morphologies. For example, the DNA templated nanoparticle assembly has low scalability and requires aqueous conditions, while other approaches such as controlled drying and polymer templating access only simple 1-D, 2-D, and 3-D structures with limited assembly patterns.

View Article and Find Full Text PDF