This study synthesized the available evidence of simulation-based electronic health records (EHRs) training in educational and clinical environments for healthcare providers in the literature. The Arksey and O'Malley methodological framework was employed. A systematic search was carried out in relevant databases from inception to January 2020, identifying 24 studies for inclusion.
View Article and Find Full Text PDFPurpose: This study aimed to assess the effect of monitoring 2 versus 3 collocated displays on radiation therapist technologists' (RTTs) workload (WL) and situation awareness (SA) during routine treatment delivery tasks.
Methods And Materials: Seven RTTs completed 4 simulated treatment delivery scenarios (2 scenarios per experimental condition; 2 vs 3 collocated displays) in a within-subject experiment. WL was subjectively measured using the National Aeronautics and Space Administration (NASA) Task Load Index, and objectively measured using eye activity measures.
Introduction: Effective electronic health record (EHR)-based training interventions facilitate improved EHR use for healthcare providers. One such training intervention is simulation-based training that emphasises learning actual tasks through experimentation in a risk-free environment without negative patient outcomes. EHR-specific simulation-based training can be employed to improve EHR use, thereby enhancing healthcare providers' skills and behaviours.
View Article and Find Full Text PDFPurpose: Our purpose was to assess the effect of workspace configuration on radiation therapists' (RTs) physical stressors, mental workload (WL), situational awareness (SA), and performance during routine treatment delivery tasks in a simulated environment.
Methods And Materials: Fourteen RTs were randomized to 2 workspace configurations while performing 4 simulated scenarios: current (not ergonomically optimized; n = 7) and enhanced (ergonomically optimized, n = 7). Physical stressors were objectively assessed using a rapid upper limb assessment tool.
Information visualizations may be evaluated from the perspective of how they match tasks that must be performed with them, a cognitive fit perspective. However, there is a gap between the high-level references made to cognitive fit and the low-level ability to identify and measure it during human interaction with visualizations. We bridge this gap by using an electroencephalography metric derived from frontal midline theta power and parietal alpha power, known as the task load index, to determine if cognitive effort measured at the level of cortical activity is less when cognitive fit is present compared to when cognitive fit is not.
View Article and Find Full Text PDFSensory feedback, which can be presented in different modalities - single and combined, aids task performance in human-robotic interaction (HRI). However, combining feedback modalities does not always lead to optimal performance. Indeed, it is not known how feedback modalities affect operator performance under stress.
View Article and Find Full Text PDFFollowing publication of the original article [1], the authors reported an error in one of the authors' names. In this Correction the incorrect and correct author name are shown. The original publication of this article has been corrected.
View Article and Find Full Text PDFBackground: A common challenge with all opioid use disorder treatment paths is withdrawal management. When withdrawal symptoms are not effectively monitored and managed, they lead to relapse which often leads to deadly overdose. A prerequisite for effective opioid withdrawal management is early identification and assessment of withdrawal symptoms.
View Article and Find Full Text PDF