Publications by authors named "Joseph J Reczek"

Optical polarizers encompass a class of anisotropic materials that pass-through discrete orientations of light and are found in wide-ranging technologies, from windows and glasses to cameras, digital displays and photonic devices. The wire-grids, ordered surfaces, and aligned nanomaterials used to make polarized films cannot be easily reconfigured once aligned, limiting their use to stationary cross-polarizers in, for example, liquid crystal displays. Here we describe a supramolecular material set and patterning approach where the polarization angle in stand-alone films can be precisely defined at the single pixel level and reconfigured following initial alignment.

View Article and Find Full Text PDF

Charge-transfer materials based on the self-assembly of aromatic donor-acceptor complexes enable a modular organic-synthetic approach to develop and fine-tune electronic and optical properties, and thus these material systems stand to impact a wide range of technologies. Through laser-induction of temperature gradients, in this study, user-defined patterning of strongly dichroic and piezoelectric organic thin films composed of donor-acceptor columnar liquid crystals is shown. Fine, reversible control over isotropic versus anisotropic regions in thin films is demonstrated, enabling noncontact writing/rewriting of micropolarizers, bar codes, and charge-transfer based devices.

View Article and Find Full Text PDF

The formation of highly anisotropic organic thin films based on the designed self-assembly of mixed-stack liquid crystals is reported. A series of alkoxyanthracene donors is combined in a modular fashion with a naphthalenediimide acceptor to generate new charge-transfer columnar liquid crystals. Materials characterization and molecular modeling provides insight into structure-function relationships in these organic materials that lead to the striking bulk dichroic properties of certain molecular assemblies.

View Article and Find Full Text PDF

Molar mixtures (1:1) of electron-rich dialkoxynapthalene (Dan) and electron-deficient 1,4,5,8-napthalenetetracarboxylic diimide (Ndi) derivatives form highly tunable, columnar mesophases with a dark red color due to a charge transfer absorbance derived from alternating face-centered stacking. Certain Dan-Ndi mixtures undergo a dramatic color change from dark red to an almost colorless material upon crystallizing from the mesophase. Macroscopic morphology of the solid is not changed during this process.

View Article and Find Full Text PDF

This paper presents a robust method for the conjugation of viologens to peptides using an amide coupling strategy that is compatible with standard Fmoc solid-phase peptide synthesis. Methodology is presented for monitoring the milligram scale process quantitatively by UV spectroscopy. This chemistry enables the synthesis of a broad range of asymmetric viologens in high yield at room temperature and is compatible with a wide range of functional groups, including amine, guanidinyl, thiol, carboxylic acid, phenol, and indole.

View Article and Find Full Text PDF

Developing nontraditional approaches to the synthesis and characterization of multivalent compounds is critical to our efforts to study and interface with biological systems and to build new noncovalent materials. This paper demonstrates a biomimetic approach to the construction of discrete, modular, multivalent receptors via molecular self-assembly in aqueous solution. Scaffolds presenting 1-3 viologen groups recruit a respective 1-3 copies of the synthetic host, cucurbit[8]uril, in a noncooperative manner and with a consistent equilibrium association constant (K(a)) value of 2 x 10(6) M(-1) per binding site.

View Article and Find Full Text PDF

The DNA binding of novel threading bis-intercalators V1, trans-D1, and cis-C1, which contain two naphthalene diimide (NDI) intercalation units connected by a scaffold, was evaluated using electrospray ionization mass spectrometry (ESI-MS) and DNAse footprinting techniques. ESI-MS experiments confirmed that V1, the ligand containing the -Gly3-Lys- peptide scaffold, binds to a DNA duplex containing the 5'-GGTACC-3' specific binding site identified in previous NMR-based studies. The ligand formed complexes with a ligand/DNA binding stoichiometry of 1:1, even when there was excess ligand in solution.

View Article and Find Full Text PDF

Derivatives of relatively electron rich 1,5-dialkoxynaphthalene (Dan) donors and relatively electron deficient 1,4,5,8-naphthalenetetracarboxylic diimide (Ndi) acceptors have been exploited in the folding and self-assembly of a variety of complex molecular systems in solution. Here, we report the use of Dan and Ndi derivatives to direct assembly of extended columns with alternating face-centered stacked structure in the solid state. A variety of 1:1 Dan:Ndi mixtures produced mesophases that were found to be stable over temperature ranges extending up to 110 degrees C.

View Article and Find Full Text PDF