Winter climate change constitutes not only a shift in chronic conditions (i.e., shorter length and warmer average temperatures) but will also influence the dynamics of extreme warming events.
View Article and Find Full Text PDFTime series data on arthropod populations are critical for understanding the magnitude, direction, and drivers of change. However, most arthropod monitoring programs are short-lived and restricted in taxonomic resolution. Monitoring data from the Arctic are especially underrepresented, yet critical to uncovering and understanding some of the earliest biological responses to rapid environmental change.
View Article and Find Full Text PDFSpiders at southern latitudes commonly produce multiple clutches, but this has not been observed at high latitudes where activity seasons are much shorter. Yet the timing of snowmelt is advancing in the Arctic, which may allow some species to produce an additional clutch. To determine if this is already happening, we used specimens of the wolf spider caught by pitfall traps from the long-term (1996-2014) monitoring programme at Zackenberg, NE Greenland.
View Article and Find Full Text PDFThe Circumpolar Biodiversity Monitoring Programme (CBMP) provides an opportunity to improve our knowledge of Arctic arthropod diversity, but initial baseline studies are required to summarise the status and trends of planned target groups of species known as Focal Ecosystem Components (FECs). We begin this process by collating available data for a relatively well-studied region in the Arctic, the North Atlantic region, summarising the diversity of key terrestrial arthropod FECs, and compiling trends for some representative species. We found the FEC classification system to be challenging to implement, but identified some key groups to target in the initial phases of the programme.
View Article and Find Full Text PDFThe Arctic is warming at twice the rate of the rest of the world. This impacts Arctic species both directly, through increased temperatures, and indirectly, through structural changes in their habitats. Species are expected to exhibit idiosyncratic responses to structural change, which calls for detailed investigations at the species and community level.
View Article and Find Full Text PDFThe response of body size to increasing temperature constitutes a universal response to climate change that could strongly affect terrestrial ectotherms, but the magnitude and direction of such responses remain unknown in most species. The metabolic cost of increased temperature could reduce body size but long growing seasons could also increase body size as was recently shown in an Arctic spider species. Here, we present the longest known time series on body size variation in two High-Arctic butterfly species: Boloria chariclea and Colias hecla.
View Article and Find Full Text PDF