Biodiversity-stability relationships have frequently been studied in ecology, with the recent integration of traits to explain community stability over time. Classical theory underlying the biodiversity-stability relationship posits that different species' responses to the environment should stabilise community-level properties (e.g.
View Article and Find Full Text PDFGeodiversity - the abiotic heterogeneity of Earth's (sub)surface - is gaining recognition for its ecological links to biodiversity. However, theoretical and conceptual knowledge of geodiversity-trait diversity relationships is currently lacking and can improve understanding of abiotic drivers of community assembly. Here we synthesise the state of knowledge of these relationships.
View Article and Find Full Text PDFCurrent analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked.
View Article and Find Full Text PDFContext: Recent research suggests that novel geodiversity data on landforms, hydrology and surface materials can improve biodiversity models at the landscape scale by quantifying abiotic variability more effectively than commonly used measures of spatial heterogeneity. However, few studies consider whether these variables can account for, and improve our understanding of, species' distributions.
Objectives: Assess the role of geodiversity components as macro-scale controls of plant species' distributions in a montane landscape.
Understanding threatened species diversity is important for long-term conservation planning. Geodiversity-the diversity of Earth surface materials, forms, and processes-may be a useful biodiversity surrogate for conservation and have conservation value itself. Geodiversity and species richness relationships have been demonstrated; establishing whether geodiversity relates to threatened species' diversity and distribution pattern is a logical next step for conservation.
View Article and Find Full Text PDFFour-component xerogel films consisting of 1 mole-% n-octadecyltrimethoxysilane (C18) and 50 mole-% tetraethoxysilane (TEOS) in combination with 1-24 mole-% tridecafluoro-1,1,2,2-tetrahydrooctyltriethoxysilane (TDF) and 25-48 mole-% n-octyltriethoxysilane (C8) and a 1:49:50 mole-% C18/TDF/TEOS were prepared. Settlement of barnacle cyprids and removal of juvenile barnacles, settlement of zoospores of the alga Ulva linza, and strength of attachment of 7-day sporelings (young plants) of Ulva were compared amongst the xerogel formulations. Several of the xerogel formulations were comparable to poly(dimethylsiloxane) elastomer with respect to removal of juvenile barnacles and removal of sporeling biomass.
View Article and Find Full Text PDF