Sulfide formation by oil field sulfate-reducing bacteria (SRB) can be diminished by the injection of nitrate, stimulating the growth of nitrate-reducing bacteria (NRB). We monitored the field-wide injection of nitrate into a low temperature (approximately 30 degrees C) oil reservoir in western Canada by determining aqueous concentrations of sulfide, sulfate, nitrate, and nitrite, as well as the activities of NRB in water samples from 3 water plants, 2 injection wells, and 15 production wells over 2 years. The injection water had a low sulfate concentration (approximately 1 mM).
View Article and Find Full Text PDFAcetate, propionate, and butyrate, collectively referred to as volatile fatty acids (VFA), are considered among the most important electron donors for sulfate-reducing bacteria (SRB) and heterotrophic nitrate-reducing bacteria (hNRB) in oil fields. Samples obtained from a field in the Neuquén Basin, western Argentina, had significant activity of mesophilic SRB, hNRB, and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). In microcosms, containing VFA (3 mM each) and excess sulfate, SRB first used propionate and butyrate for the production of acetate, which reached concentrations of up to 12 mM prior to being used as an electron donor for sulfate reduction.
View Article and Find Full Text PDFThere is great interest in engineering human growth factors as potential therapeutic agonists and antagonists. We approached this goal with a synthetic DNA recombination method. We aligned a pool of "top-strand" oligonucleotides incorporating polymorphisms from mammalian genes encoding epidermal growth factor (EGF) using multiple polymorphic "scaffold" oligonucleotides.
View Article and Find Full Text PDFChemostat enrichment is a classical microbiological method that is well suited for use in directed-evolution strategies. We used a two-phase sulfur-limited chemostat to select for gain-of-function mutants with mutations in the biodesulfurization (Dsz) system of Rhodococcus erythropolis IGTS8, enriching for growth in the presence of organosulfur compounds that could not support growth of the wild-type strain. Mutations arose that allowed growth with octyl sulfide and 5-methylbenzothiophene as sole sulfur sources.
View Article and Find Full Text PDF