To evaluate a recently developed technique using intraoperative optical coherence tomography (OCT) to measure subretinal tissue plasminogen activator (tPA) volumes in patients with submacular hemorrhage secondary to exudative age-related macular degeneration (AMD). Three patients (72 to 83 years old) had 25-gauge pars plana vitrectomy, subretinal tPA, and a partial gas fill. An investigational intraoperative OCT system with a modified widefield noncontact indirect viewing apparatus was used to image subretinal tPA blebs.
View Article and Find Full Text PDFPoint scanning retinal imaging modalities, including confocal scanning light ophthalmoscopy (cSLO) and optical coherence tomography, suffer from fixational motion artifacts. Fixation targets, though effective at reducing eye motion, are infeasible in some applications (e.g.
View Article and Find Full Text PDFPurpose: To evaluate the diagnostic performance of a robotically aligned optical coherence tomography (RAOCT) system coupled with a deep learning model in detecting referable posterior segment pathology in OCT images of emergency department patients.
Methods: A deep learning model, RobOCTNet, was trained and internally tested to classify OCT images as referable versus non-referable for ophthalmology consultation. For external testing, emergency department patients with signs or symptoms warranting evaluation of the posterior segment were imaged with RAOCT.
We describe a fiber-based coherent receiver topology which utilizes intrinsic phase shifts from fiber couplers to enable instantaneous quadrature projection with shot-noise limited signal-to-noise ratio (SNR). Fused 3 × 3 fiber couplers generate three phase-shifted signals simultaneously that can be combined with quadrature projection methods to detect magnitude and phase unambiguously. We present a novel, to the best of our knowledge, differential detection topology which utilizes a combination of 3 × 3 and 2 × 2 couplers to enable quadrature projection with fully differential detection.
View Article and Find Full Text PDFExtraretinal neovascularization is a hallmark of treatment-requiring retinopathy of prematurity (ROP). Optical coherence tomography angiography (OCTA) offers vascular flow and depth information not available from indirect ophthalmoscopy and structural OCT, but OCTA is only commercially available as a tabletop device. In this study, we used an investigational handheld OCTA device to study the vascular flow in and around retinal neovascularization in seven preterm infants with treatment-requiring ROP and contrasted them to images of vascular flow in six infants of similar age without neovascular ROP.
View Article and Find Full Text PDF[This corrects the article on p. 3308 in vol. 14, PMID: 37497493.
View Article and Find Full Text PDFHigh-speed, accessible, and robust imaging of the human retina is critical for screening of retinal pathologies, such as diabetic retinopathy, age-related macular degeneration, and others. Scanning light ophthalmoscopy (SLO) is a retinal imaging modality that produces digital, images of the human retina with superior image gradability rates when compared to the current standard of care in screening for these diseases, namely the flood-illumination handheld fundus camera (HFC). However, current-generation commercial SLO systems are mostly tabletop devices, limiting their accessibility and utility in screening applications.
View Article and Find Full Text PDFPurpose: To report macular neurovascular abnormalities in a child with incontinentia pigmenti using handheld optical coherence tomography (OCT) and OCT angiography (OCT-A).
Methods: An eye of a child with incontinentia pigmenti enrolled in BabySTEPS was imaged using an investigational noncontact, handheld swept-source OCT device during examination under anesthesia. Custom MATLAB scripts were used to generate depth-resolved vascular slabs, B-scans with flow overlay, and retinal thickness maps.
Ophthalmic microsurgery is traditionally performed using stereomicroscopes and requires visualization and manipulation of sub-millimeter tissue structures with limited contrast. Optical coherence tomography (OCT) is a non-invasive imaging modality that can provide high-resolution, depth-resolved cross sections, and has become a valuable tool in clinical practice in ophthalmology. While there has been substantial progress in both research and commercialization efforts to bring OCT imaging into live surgery, its use is still somewhat limited due to factors such as low imaging speed, limited scan configurations, and suboptimal data visualization.
View Article and Find Full Text PDF4D-microscope-integrated optical coherence tomography (4D-MIOCT) is an emergent multimodal imaging technology in which live volumetric OCT (4D-OCT) is implemented in tandem with standard stereo color microscopy. 4D-OCT provides ophthalmic surgeons with many useful visual cues not available in standard microscopy; however it is challenging for the surgeon to effectively integrate cues from simultaneous-but-separate imaging in real-time. In this work, we demonstrate progress towards solving this challenge via the fusion of data from each modality guided by segmented 3D features.
View Article and Find Full Text PDFBackground/purpose: Visualization of peripheral retinal structures with optical coherence tomography (OCT) can be challenging but can offer valuable clinical information. We describe a method for intraoperative OCT of the peripheral retina.
Methods: An investigational microscope-integrated OCT system with real-time 4D volumetric imaging was used in conjunction with a Goldmann style mirrored contact lens intraoperatively to capture peripheral images in three patients.
Deep anterior lamellar keratoplasty (DALK) is a technique for cornea transplantation which is associated with reduced patient morbidity. DALK has been explored as a potential application of robot microsurgery because the small scales, fine control requirements, and difficulty of visualization make it very challenging for human surgeons to perform. We address the problem of modelling the small scale interactions between the surgical tool and the cornea tissue to improve the accuracy of needle insertion, since accurate placement within 5% of target depth has been associated with more reliable clinical outcomes.
View Article and Find Full Text PDFOphthalmic optical coherence tomography (OCT) has achieved remarkable clinical success but remains sequestered in ophthalmology specialty offices. Recently introduced robotic OCT systems seek to expand patient access but fall short of their full potential due to significant imaging workspace and motion planning restrictions. Here, we present a next-generation robotic OCT system capable of imaging in any head orientation or posture that is mechanically reachable.
View Article and Find Full Text PDFDuring the COVID-19 pandemic, an emphasis was placed on contactless, physical distancing and improved telehealth; contrariwise, standard-of-care ophthalmic imaging of patients required present, trained personnel. Here, we introduce contactless, autonomous robotic alignment of optical coherence tomography (RAOCT) for imaging of retinal disease and compare measured retinal thickness and diagnostic readability to technician operated clinical OCT. In a powered study, we found no statistically significant difference in retinal thickness in both healthy and diseased retinas ( > 0.
View Article and Find Full Text PDFIntraoperative optical coherence tomography (OCT) systems provide high-resolution, real-time visualization and/or guidance of microsurgical procedures. While the use of intraoperative OCT in ophthalmology has significantly improved qualitative visualization of surgical procedures inside the eye, new surgical techniques to deliver therapeutics have highlighted the lack of quantitative information available with current-generation intraoperative systems. Indirect viewing systems used for retinal surgeries introduce distortions into the resulting OCT images, making it particularly challenging to make calibrated quantitative measurements.
View Article and Find Full Text PDFStudy Objective: To evaluate the diagnostic performance of emergency physicians' interpretation of robotically acquired retinal optical coherence tomography images for detecting posterior eye abnormalities in patients seen in the emergency department (ED).
Methods: Adult patients presenting to Duke University Hospital emergency department from November 2020 through October 2021 with acute visual changes, headache, or focal neurologic deficit(s) who received an ophthalmology consultation were enrolled in this pilot study. Emergency physicians provided standard clinical care, including direct ophthalmoscopy, at their discretion.
Optical coherence tomography (OCT) may be useful for guidance of ocular microsurgeries such as deep anterior lamellar keratoplasty (DALK), a form of corneal transplantation that requires delicate insertion of a needle into the stroma to approximately 90% of the corneal thickness. However, visualization of the true shape of the cornea and the surgical tool during surgery is impaired in raw OCT volumes due to both light refraction at the corneal boundaries, as well as geometrical optical path length distortion due to the group velocity of broadband OCT light in tissue. Therefore, uncorrected B-scans or volumes may not provide an accurate visualization suitable for reliable surgical guidance.
View Article and Find Full Text PDFOptical coherence tomography (OCT) has seen widespread success as an in vivo clinical diagnostic 3D imaging modality, impacting areas including ophthalmology, cardiology, and gastroenterology. Despite its many advantages, such as high sensitivity, speed, and depth penetration, OCT suffers from several shortcomings that ultimately limit its utility as a 3D microscopy tool, such as its pervasive coherent speckle noise and poor lateral resolution required to maintain millimeter-scale imaging depths. Here, we present 3D optical coherence refraction tomography (OCRT), a computational extension of OCT which synthesizes an incoherent contrast mechanism by combining multiple OCT volumes, acquired across two rotation axes, to form a resolution-enhanced, speckle-reduced, refraction-corrected 3D reconstruction.
View Article and Find Full Text PDFFrequency-modulated continuous wave (FMCW) light detection and ranging (LiDAR) is an emerging 3D ranging technology that offers high sensitivity and ranging precision. Due to the limited bandwidth of digitizers and the speed limitations of beam steering using mechanical scanners, meter-scale FMCW LiDAR systems typically suffer from a low 3D frame rate, which greatly restricts their applications in real-time imaging of dynamic scenes. In this work, we report a high-speed FMCW based 3D imaging system, combining a grating for beam steering with a compressed time-frequency analysis approach for depth retrieval.
View Article and Find Full Text PDFOptical coherence tomography (OCT) has revolutionized diagnostics in ophthalmology. However, OCT requires a trained operator and patient cooperation to carefully align a scanner with the subject's eye and orient it in such a way that it images a desired region of interest at the retina. With the goal of automating this process of orienting and aligning the scanner, we developed a robot-mounted OCT scanner that automatically aligned with the pupil while matching its optical axis with the target region of interest at the retina.
View Article and Find Full Text PDFPurpose: To establish methods to visualize depth-resolved perifoveal retinal vasculature in preterm infants using handheld optical coherence tomography angiography (OCT-A).
Methods: In this exploratory study, eyes of preterm infants were imaged using an investigational noncontact, handheld swept-source OCT-A device as part of the prospective BabySTEPS infant retinal imaging study. We selected high-quality OCT-A volumes at two developmental stages for analysis.
Clinical systems for optical coherence tomography (OCT) are used routinely to diagnose and monitor patients with a range of ocular diseases. They are large tabletop instruments operated by trained staff, and require mechanical stabilization of the head of the patient for positioning and motion reduction. Here we report the development and performance of a robot-mounted OCT scanner for the autonomous contactless imaging, at safe distances, of the eyes of freestanding individuals without the need for operator intervention or head stabilization.
View Article and Find Full Text PDFPurpose: To investigate the use of imaging modalities in the volumetric measurement of the subretinal space and examine the volume of subretinal blebs created by a subretinal drug delivery device utilizing microscope-integrated optical coherence tomography (MIOCT).
Methods: An MIOCT image-based volume measurement method was developed and assessed for accuracy and reproducibility by imaging ceramic spheres of known size that were surgically implanted into ex vivo porcine eyes. This method was then used to measure subretinal blebs created in 10 porcine eyes by injection of balanced salt solution utilizing a subretinal delivery device via a suprachoroidal cannula.
Anterior uveitis is the most common form of intraocular inflammation, and one of its main signs is the presence of white blood cells (WBCs) in the anterior chamber (AC). Clinically, the true composition of cells can currently only be obtained using AC paracentesis, an invasive procedure to obtain AC fluid requiring needle insertion into the AC. We previously developed a spectroscopic optical coherence tomography (SOCT) analysis method to differentiate between populations of RBCs and subtypes of WBCs, including granulocytes, lymphocytes and monocytes, both and in ACs of excised porcine eyes.
View Article and Find Full Text PDF