Publications by authors named "Joseph Irudayaraj"

Exposure to emerging energy-based environmental contaminants such as lithium bis(trifluoromethanesulfonyl)imide (LiTFSI, trade name HQ-115), poses a significant threat to human health, yet its impact on kidney function and epigenetic regulation remains poorly understood. Here, we investigated the effects of LiTFSI exposure on kidney-related biochemical indicators, renal injuries, and epigenetic alterations in male CD-1 mice under both 14-day and 30-day exposure durations. Our study revealed that LiTFSI exposure led to changes in kidney-related markers, notably affecting serum bicarbonate levels, while relative kidney weight remained unaffected.

View Article and Find Full Text PDF
Article Synopsis
  • Retinal hypoxia is a key but often overlooked factor in the development and progression of several retinal disorders, including glaucoma and diabetic retinopathy.
  • Currently available treatments focus on managing symptoms rather than directly targeting the underlying issue of hypoxia.
  • There is a growing need for new therapeutic strategies that directly address retinal hypoxia, supported by advancements in technology, to improve outcomes for patients facing vision loss.
View Article and Find Full Text PDF

Evaluating the dynamic interaction of microorganisms and mammalian cells is challenging due to the lack of suitable platforms for examining interspecies interactions in biologically relevant coculture conditions. In this work, we demonstrate the interaction between probiotic bacteria ( and ) and A498 human cancer cells , utilizing a hydrogel-based platform in a label-free manner by infrared spectroscopy. The strain recapitulated in the compartment system secretes polypeptide molecules such as nisin, which has been reported to trigger cell apoptosis.

View Article and Find Full Text PDF

Herein, we propose a Carbopol hydrogel-based oxygen nanodelivery "nanohyperbaric" system as a wound dressing material for an enhanced wound healing process. Oxygen nanobubbles (ONBs) were used to supply oxygen, and collagenase was added in the gel as a drug model. Both oxygen and collagenase would benefit the wound healing process, and the Carbopol hydrogel serves as the matrix to load ONBs and collagenase in the wound dressing.

View Article and Find Full Text PDF

Bacteria-assisted chemotherapeutics have been highlighted as an alternative or supplementary approach to treating cancer. However, dynamic cancer-microbe studies at the level have remained a challenge to show the impact and effectiveness of microbial therapeutics due to the lack of relevant coculture models. Here, we demonstrate a hydrogel-based compartmentalized system for prodrug activation of a natural ingredient of licorice root, glycyrrhizin, by microbial β-glucuronidase (GUS).

View Article and Find Full Text PDF

The potential effects of poly- and perfluoroalkyl substances (PFAS) are a recently emergent human and environmental health concern. There is a consistent link between PFAS exposure and cancer, but the mechanisms are poorly understood. Although epidemiological evidence supporting PFAS exposure and cancer in general is conflicting, there is relatively strong evidence linking PFAS and testicular germ cell tumors (TGCTs).

View Article and Find Full Text PDF
Article Synopsis
  • Wound healing can be negatively affected by poor blood vessel formation, inflammation, and low oxygen levels in tissues.
  • Exosomes from stem cells can help healing by delivering important growth factors, but their effectiveness is limited in hypoxic conditions.
  • A new hybrid hydrogel using oxygen nanobubbles and exosomes improves oxygen levels, enhances healing, and reduces inflammation in wounds, showing promising results in a rat study.
View Article and Find Full Text PDF

Per- and Polyfluoroalkyl substances (PFAS) have been widely used in various industries, including pesticide production, electroplating, packaging, paper making, and the manufacturing of water-resistant clothes. This study investigates the levels of PFAS in fish tissues collected from four target waterways (15 sampling points) in the northwestern part of Illinois during 2021-2022. To assess accumulation, concentrations of 17 PFAS compounds were evaluated in nine fish species to potentially inform on exposure risks to local sport fishing population via fish consumption.

View Article and Find Full Text PDF

We evaluate the cytotoxicity, intracellular redox conditions, apoptosis, and methylation of / upon exposure to LiTFSI, a novel Per and Polyfluoroalkyl Substances (PFAS) commonly found in lithium-ion batteries, on human renal carcinoma cells (A498) and hepatoma cells (HepG2). The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay showed both Perfluorooctane sulfonate (PFOS) and Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) had a dose-dependent effect on A498 and HepG2, with LiTFSI being less toxic. Intracellular redox conditions were assessed with a microplate reader and confocal, which showed a significant decrease in Reactive Oxygen Species (ROS) levels and an increase in Superoxide dismutase (SOD) content in both cells.

View Article and Find Full Text PDF

Lithium Bis(trifluoromethanesulfonyl)imide (LiTFSI ie. HQ-115), a polymer electrolyte used in energy applications, has been detected in the environment, yet its health risks and environmental epigenetic effects remain unknown. This study aims to unravel the potential health risks associated with LiTFSI, investigate the role of DNA methylation-induced toxic mechanisms in its effects, and compare its hepatotoxic impact with the well-studied Perfluorooctanoic Acid (PFOA).

View Article and Find Full Text PDF

The presence of β-lactamase positive microorganisms imparts a pharmacological effect on a variety of organisms that can impact drug efficacy by influencing the function or composition of bacteria. Although studies to assess dynamic intra- and interspecies communication with bacterial communities exist, the efficacy of drug treatment and quantitative assessment of multiorganism response is not well understood due to the lack of technological advances that can be used to study coculture interactions in a dynamic format. In this study, we investigate how β-lactamase positive microorganisms can neutralize the effect of β-lactam antibiotics in a dynamic format at the inter- and intraspecies level using microbial bead technology.

View Article and Find Full Text PDF

Hypoxia, excessive reactive oxygen species (ROS), and impaired angiogenesis are prominent obstacles to wound healing following trauma and surgical procedures, often leading to the development of keloids and hypertrophic scars. To address these challenges, a novel approach has been proposed, involving the development of a cascade enzymatic reaction-based nanocarriers-laden wound dressing. This advanced technology incorporates superoxide dismutase modified oxygen nanobubbles and catalase modified oxygen nanobubbles within an alginate hydrogel matrix.

View Article and Find Full Text PDF

Crohn's disease (CD) is characterized as a chronic, relapsing, and progressive disorder with a complex etiology involving interactions between host, microbiome, and the external environment. Genome wide association studies (GWAS) suggest several genetic variations in the diseased individuals but that explains only a small proportion of susceptibility to disease conditions. This indicates the possible role of epigenome which links environmental factors to the genetic variation in the disease etiology.

View Article and Find Full Text PDF

While SARS-CoV-2 is generally under control, the question of variants and infections still persists. Fundamental information on how the virus interacts with inanimate surfaces commonly found in our daily life and when in contact with the skin will be helpful in developing strategies to inhibit the spread of the virus. Here in, a critically important review of current understanding of the interaction between virus and surface is summarized from chemistry point-of-view.

View Article and Find Full Text PDF

Herein, we propose an oxygen nanobubbles-embedded hydrogel (ONB-G) with carbopol for oxygenation of wounds to accelerate the wound healing process. We integrate carbopol, hydrogel, and dextran-based oxygen nanobubbles (ONBs) to prepare ONB-G where ONBs can hold and release oxygen to accelerate wound healing. Oxygen release tests showed that the proposed ONB-G could encapsulate oxygen in the hydrogels for up to 34 days; meanwhile, fluorescence studies indicated that the ONB-G could maintain high oxygen levels for up to 4 weeks.

View Article and Find Full Text PDF

Oxygen is a critical factor that can regulate the wound healing processes such as skin cell proliferation, granulation, re-epithelialization, angiogenesis, and tissue regeneration. However, hypoxia, a common occurrence in the wound bed, can impede normal healing processes. To enhance wound healing, oxygenation strategies that could effectively increase wound oxygen levels are effective.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) as a group of environmentally persistent synthetic chemicals has been widely used in industrial and consumer products. Bioaccumulation studies have documented the adverse effects of PFAS in various living organisms. Despite the large number of studies, experimental approaches to evaluate the toxicity of PFAS on bacteria in a biofilm-like niche as structured microbial communities are sparse.

View Article and Find Full Text PDF

Endocrine-disrupting chemicals (EDCs) are a class of man-made substances with potential to disrupt the standard function of the endocrine system. These EDCs include phthalates, perchlorates, phenols, some heavy metals, furans, dimethoate, aromatic hydrocarbons, some pesticides, and per- and polyfluoroalkyl substances (PFAS). EDCs are widespread in the environment given their frequent use in daily life.

View Article and Find Full Text PDF

Alterations of the normal gut microbiota can cause various human health concerns. Environmental chemicals are one of the drivers of such disturbances. The aim of our study was to examine the effects of exposure to perfluoroalkyl and polyfluoroalkyl substances (PFAS)-specifically, perfluorooctane sulfonate (PFOS) and 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy) propanoic acid (GenX)-on the microbiome of the small intestine and colon, as well as on liver metabolism.

View Article and Find Full Text PDF

It is known that external mechanical forces can regulate structures and functions of living cells and tissues in physiology and diseases. However, after cessation of the force, how structures are altered in response to the dynamics of the chromatin and molecules in the nucleoplasm remains elusive. Here, using single-molecule imaging approaches, we show that exogenous local forces via integrins applied for 2 to 10 min decondensed the chromatin and increased chromatin and nucleoplasm protein mobility inside the nucleus, leading to elevated diffusivity of single protein molecules in the nucleoplasm, tens of minutes after the cessation of force.

View Article and Find Full Text PDF

Emerging portable near infrared (NIR) spectroscopic approaches coupled with data analysis and chemometric techniques provide opportunities for the rapid characterization of spray-dried products and process optimization. This study aimed to enhance the understanding of applying NIR spectroscopy in spray-dried samples by comparing two sample preparation strategies and two spectrometers. Two sets of whey protein-maltodextrin matrixes, one with a protein content gradient and one with a consistent protein content, were spray-dried, and the effect of the two preparation strategies on NIR calibration model development was studied.

View Article and Find Full Text PDF

Purpose: Vein or artery occlusion causes a hypoxic environment by preventing oxygen delivery and diffusion to tissues. Diseases such as retinal vein occlusion, central retinal artery occlusion, or diabetic retinopathy create a stroke-type condition that leads to functional blindness in the effected eye. We aim to develop an oxygen delivery system consisting of oxygen nanobubbles (ONBs) that can mitigate retinal ischemia during a severe hypoxic event such as central retinal artery occlusion.

View Article and Find Full Text PDF

Endocrine disrupting chemicals (EDCs) are exogenous substances that alter the endocrine function of an organism, to result in adverse effects on growth and development, metabolism, and reproductive function. The kidney is one of the most important organs in the urinary system and an accumulation point. Studies have shown that EDCs can cause proteinuria, affect glomeruli and renal tubules, and even lead to diabetes and renal fibrosis in animal and human studies.

View Article and Find Full Text PDF

To sequester prokaryotic cells in a biofilm-like niche, the creation of a pertinent and reliable microenvironment that reflects the heterogeneous nature of biological systems is vital for sustenance. Design of a microenvironment that is conducive for growth and survival of organisms, should account for factors such as mass transport, porosity, stability, elasticity, size, functionality, and biochemical characteristics of the organisms in the confined architecture. In this work we present an artificial long-term confinement model fabricated by natural alginate hydrogels that are structurally stable and can host organisms for over 10 days in physiologically relevant conditions.

View Article and Find Full Text PDF

We propose a novel multifunctional nanocarrier system for targeted drug delivery for lung cancer theranostics. Oxygenated particles (OPs) synthesized with an oxygen-encapsulating carboxymethyl cellulose shell were used as a platform to deliver oxygen to the hypoxic tumor microenvironment. The OPs synthesized could also be conjugated with ligands (e.

View Article and Find Full Text PDF