The mitochondrial unfolded protein response (UPR) maintains mitochondrial quality control and proteostasis under stress conditions. However, the role of UPR in aggressive and resistant prostate cancer is not clearly defined. We show that castration-resistant neuroendocrine prostate cancer (CRPC-NE) harbored highly dysfunctional oxidative phosphorylation (OXPHOS) Complexes.
View Article and Find Full Text PDFMitochondria are essential for tumor growth and progression. However, the heavy demand for mitochondrial activity in cancer leads to increased production of mitochondrial reactive oxygen species (mtROS), accumulation of mutations in mitochondrial DNA, and development of mitochondrial dysfunction. If left unchecked, excessive mtROS can damage and unfold proteins in the mitochondria to an extent that becomes lethal to the tumor.
View Article and Find Full Text PDFMitochondrial proteostasis, regulated by the mitochondrial unfolded protein response (UPRmt), is crucial for maintenance of cellular functions and survival. Elevated oxidative and proteotoxic stress in mitochondria must be attenuated by the activation of a ubiquitous UPRmt to promote prostate cancer (PCa) growth. Here we show that the 2 key components of the UPRmt, heat shock protein 60 (HSP60, a mitochondrial chaperonin) and caseinolytic protease P (ClpP, a mitochondrial protease), were required for the development of advanced PCa.
View Article and Find Full Text PDFHigh frequency of KRAS and TP53 mutations is a unique genetic feature of pancreatic ductal adenocarcinoma (PDAC). TP53 mutation not only renders PDAC resistance to chemotherapies but also drives PDAC invasiveness. Therapies targeting activating mutant KRAS are not available and the outcomes of current PDAC treatment are extremely poor.
View Article and Find Full Text PDFMitochondrial metabolism plays key roles in pathologies such as cancer. The five complexes of the oxidative phosphorylation (OXPHOS) system are crucial for producing ATP and maintaining cellular functions and are particularly exploited in cancer cells. Understanding the oligomeric state of these OXPHOS complexes will help elucidate their function (or dysfunction) in cancer cells and can be used as a mechanistic tool for anticancer agents that target mitochondria.
View Article and Find Full Text PDFJ Neuroimmune Pharmacol
December 2021
Emerging clinical data from the current COVID-19 pandemic suggests that ~ 40% of COVID-19 patients develop neurological symptoms attributed to viral encephalitis while in COVID long haulers chronic neuro-inflammation and neuronal damage result in a syndrome described as Neuro-COVID. We hypothesize that SAR-COV2 induces mitochondrial dysfunction and activation of the mitochondrial-dependent intrinsic apoptotic pathway, resulting in microglial and neuronal apoptosis. The goal of our study was to determine the effect of SARS-COV2 on mitochondrial biogenesis and to monitor cell apoptosis in human microglia non-invasively in real time using Raman spectroscopy, providing a unique spatio-temporal information on mitochondrial function in live cells.
View Article and Find Full Text PDFIncreasing evidence indicates that a mitochondria-specific stress response referred to as the 'mitochondrial unfolded protein response' (UPR) is activated to maintain mitochondrial integrity and support tumor growth. In this forum article, we discuss the recent advances and current challenges in therapeutically targeting UPR in cancer.
View Article and Find Full Text PDFCancer cells survive and adapt to many types of stress including hypoxia, nutrient deprivation, metabolic, and oxidative stress. These stresses are sensed by diverse cellular signaling processes, leading to either degradation of mitochondria or alleviation of mitochondrial stress. This review discusses signaling during sensing and mitigation of stress involving mitochondrial communication with the endoplasmic reticulum, and how retrograde signaling upregulates the mitochondrial stress response to maintain mitochondrial integrity.
View Article and Find Full Text PDFBackground: Interleukin-8 (IL-8) and heat shock protein 60 (Hsp60) play crucial roles in cell survival and maintenance of cellular homoeostasis. However, cross talks between these two proteins are not defined.
Methods: IL-8 expression in tumour tissue sections was analysed by immunohistochemistry.
Pancreatic ductal adenocarcinoma (PDAC) is highly aggressive disease and current treatment regimens fail to effectively cure PDAC. Development of resistance to current therapy is one of the key reasons for this outcome. Nimbolide (NL), a triterpenoid obtained from Azadirachta indica, exhibits anticancer properties in various cancer including PDAC cells.
View Article and Find Full Text PDFBiochim Biophys Acta Rev Cancer
January 2017
Abrogation of endoplasmic reticulum (ER) protein folding triggered by exogenous or endogenous factors, stimulates a cellular stress response, termed ER stress. ER stress re-establishes ER homeostasis through integrated signaling termed the ER-unfolded protein response (UPR). In the presence of severe toxic or prolonged ER stress, the pro-survival function of UPR is transformed into a lethal signal transmitted to and executed through mitochondria.
View Article and Find Full Text PDFFront Biosci (Schol Ed)
January 2017
The gap between prostate cancer disparities among American men is narrowing, which is mostly due to increased screening of African American (AA) men. However, the biological reasons for prostate cancer disparities among American men still remain undefined. Mitochondrion, an organelle within cells, regulates both cell survival and cell death mechanisms.
View Article and Find Full Text PDFWe have previously reported that neem limonoids (neem) induce multiple cancer cell death pathways. Here we dissect the underlying mechanisms of neem-induced apoptotic cell death in cancer. We observed that neem-induced caspase activation does not require Bax/Bak channel-mediated mitochondrial outer membrane permeabilization, permeability transition pore, and mitochondrial fragmentation.
View Article and Find Full Text PDFCurrent therapies for glioblastoma are largely palliative, involving surgical resection followed by chemotherapy and radiation therapy, which yield serious side effects and very rarely produce complete recovery. Curcumin, a food component, blocked brain tumor formation but failed to eliminate established brain tumors in vivo, probably because of its poor bioavailability. In the glioblastoma GL261 cells, it suppressed the tumor-promoting proteins NF-κB, P-Akt1, vascular endothelial growth factor, cyclin D1 and BClXL and triggered cell death.
View Article and Find Full Text PDFIn vitro studies have shown that curcumin, a polyphenol from the culinary component turmeric, has strong anticancer properties. However, there is no consensus on its therapeutic effect in human. Our earlier experiments involving implanted murine melanoma B16F10 cells in the neck or brain of syngeneic C57BL6 mice showed that tail vein injection of curcumin blocks formation of lesions and tumor in these mice.
View Article and Find Full Text PDF