Publications by authors named "Joseph Handen"

UV resonance Raman (UVRR) spectroscopy is a powerful tool for investigating the structure of biological molecules, such as proteins. Numerous UVRR spectroscopic markers that provide information on the structure and environment of the protein backbone and of amino acid side chains have recently been discovered. Combining these UVRR markers with hydrogen-deuterium exchange and advanced statistics is a powerful tool for studying protein systems, including the structure and formation mechanism of protein aggregates and amyloid fibrils.

View Article and Find Full Text PDF

Deep UV resonance Raman spectroscopy is a powerful technique for probing the structure and formation mechanism of protein fibrils, which are traditionally difficult to study with other techniques owing to their low solubility and noncrystalline arrangement. Utilizing a tunable deep UV Raman system allows for selective enhancement of different chromophores in protein fibrils, which provides detailed information on different aspects of the fibrils' structure and formation. Additional information can be extracted with the use of advanced data treatment such as chemometrics and 2D correlation spectroscopy.

View Article and Find Full Text PDF

The vibrational circular dichroism (VCD) spectra of microcrystals of fibril-forming peptides have been measured for the first time. VCD spectra were measured and compared for microcrystals and fibrils formed from the same peptide, human islet amyloid polypeptide (IAPP, amylin). Structural information related to the supramolecular chirality of both the microcrystals and the fibrils, as well as the VCD enhancement mechanisms in fibrils and microcrystals, is obtained from these spectral comparisons.

View Article and Find Full Text PDF