Publications by authors named "Joseph H Taube"

The goal of proteomics experiments is to identify proteins to observe changes in cellular processes and diseases. One challenge in proteomics is the removal of contaminants following protein extraction, which can limit protein identifications. Single-pot, solid-phase-enhanced sample preparation (SP3) is a cleanup technique in which proteins are captured on carboxylate-modified particles through a proposed hydrophilic-interaction-liquid-chromatography (HILIC)-like mechanism.

View Article and Find Full Text PDF

The goal of proteomics experiments is to identify proteins to observe changes in cellular processes and diseases. One challenge in proteomics is the removal of contaminants following protein extraction, which can limit protein identification. Single-pot, solid-phase-enhanced sample preparation (SP3) is a clean-up technique in which proteins are captured on carboxylate-modified particles through a proposed hydrophilic-interaction-liquid-chromatography (HILIC)-like mechanism.

View Article and Find Full Text PDF

Biological nanoparticles, such as bacterial outer membrane vesicles (OMVs), are routinely characterized through transmission electron microscopy (TEM). In this study, we report a novel method to prepare OMVs for TEM imaging. To preserve vesicular shape and structure, we developed a dual fixation protocol involving osmium tetroxide incubation prior to negative staining with uranyl acetate.

View Article and Find Full Text PDF

Covering: 1995 to 2022Tumors possess both genetic and phenotypic heterogeneity leading to the survival of subpopulations post-treatment. The term cancer stem cells (CSCs) describes a subpopulation that is resistant to many types of chemotherapy and which also possess enhanced migratory and anchorage-independent growth capabilities. These cells are enriched in residual tumor material post-treatment and can serve as the seed for future tumor re-growth, at both primary and metastatic sites.

View Article and Find Full Text PDF

Epithelial-mesenchymal transition (EMT) and its reversal, mesenchymal-epithelial transition (MET) drive tissue reorganization critical for early development. In carcinomas, processing through EMT, MET, or partial states promotes migration, invasion, dormancy, and metastatic colonization. As a reversible process, EMT is inherently regulated at epigenetic and epigenomic levels.

View Article and Find Full Text PDF

Triple-negative breast cancers affect thousands of women in the United States and disproportionately drive mortality from breast cancer. MicroRNAs are small, non-coding RNAs that negatively regulate gene expression post-transcriptionally by inhibiting target mRNA translation or by promoting mRNA degradation. We have identified that miRNA-203, silenced by epithelial-mesenchymal transition (EMT), is a tumor suppressor and can promote differentiation of breast cancer stem cells.

View Article and Find Full Text PDF

We are glad to share with you our eighth Journal Club and to highlight some of the most interesting papers published recently [...

View Article and Find Full Text PDF

Staurosporine is among the most potent naturally occurring kinase inhibitors isolated to date and has served as a lead compound for numerous drug development efforts in several therapeutic areas. Herein we report that C-H borylation chemistry provides access to analogs of staurosporine that were previously inaccessible to medicinal chemists who, in the past four decades, have prepared over 1000 semisynthetic staurosporine analogs.

View Article and Find Full Text PDF

Pharmacophore-directed retrosynthesis applied to ophiobolin A led to bicyclic derivatives that were synthesized and display anticancer activity. Key features of the ultimate defensive synthetic strategy include a Michael addition/facially selective protonation sequence to set the critical C6 stereocenter and a ring-closing metathesis to form the cyclooctene. Cytotoxicity assays toward a breast cancer cell line (MDA-MB-231) confirm the anticipated importance of structural complexity for selectivity (vs MCF10A cells) while C3 variations modulate stability.

View Article and Find Full Text PDF

Properly timed addition and removal of histone 3 lysine 27 tri-methylation (H3K27me3) is critical for enabling proper differentiation throughout all stages of development and, likewise, can guide carcinoma cells into altered differentiation states which correspond to poor prognoses and treatment evasion. In early embryonic stages, H3K27me3 is invoked to silence genes and restrict cell fate. Not surprisingly, mutation or altered functionality in the enzymes that regulate this pathway results in aberrant methylation or demethylation that can lead to malignancy.

View Article and Find Full Text PDF

Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by a single genetic mutation in the Fmr1 gene, serving as the largest genetic cause of intellectual disability. Trinucleotide expansion mutations in Fmr1 result in silencing and hypermethylation of the gene, preventing synthesis of the RNA binding protein Fragile X mental retardation protein which functions as a translational repressor. Abnormal immune responses have been demonstrated to play a role in FXS pathophysiology, however, whether these alterations impact how those with FXS respond to an immune insult behaviorally is not entirely known.

View Article and Find Full Text PDF

The use of liposomes as a drug delivery carrier (DDC) for the treatment of various diseases, especially cancer, is rapidly increasing, requiring more stringent synthesis, formulation, and preservation techniques to bolster safety and efficacy. Liposomes otherwise referred to as phospholipid vesicles are self-assembled colloidal particles. When formed in either the micrometer or nanometer size range, they are ideal candidates as DDC because of their biological availability, performance, activity, and compatibility.

View Article and Find Full Text PDF

Background: Triple-negative breast cancers (TNBCs), which lack receptors for estrogen, progesterone, and amplification of epidermal growth factor receptor 2, are highly aggressive. Consequently, patients diagnosed with TNBCs have reduced overall and disease-free survival rates compared to patients with other subtypes of breast cancer. TNBCs are characterized by the presence of cancer cells with mesenchymal properties, indicating that the epithelial to mesenchymal transition (EMT) plays a major role in the progression of this disease.

View Article and Find Full Text PDF

The hypercalins are dearomatized acylphloroglucinols with a pendant complex cyclopentane ring that exhibit activity against several cancer cell lines. We report the first total synthesis of (+)-hypercalin C employing a convergent strategy that enabled the dissection of the essential structural features required for the observed anticancer activity. A strategic disconnection involving an unusual C -C Suzuki-Miyaura coupling with an α-bromo enolether also revealed an unexpected C-H activation.

View Article and Find Full Text PDF

We are delighted to share with you our sixth Journal Club and highlight some of the most interesting papers published recently [...

View Article and Find Full Text PDF

We are delighted to share with you our fifth Journal Club and highlight some of the most interesting papers published recently.[..

View Article and Find Full Text PDF

The deposition of the activating H3K4me3 and repressive H3K27me3 histone modifications within the same promoter, forming a so-called bivalent domain, maintains gene expression in a repressed but transcription-ready state. We recently reported a significantly increased incidence of bivalency following an epithelial-mesenchymal transition (EMT), a process associated with the initiation of the metastatic cascade. The reverse process, known as the mesenchymal-epithelial transition (MET), is necessary for efficient colonization.

View Article and Find Full Text PDF

Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by a single genetic mutation in the FMR1 gene. Mutations in the FMR1 gene are the largest monogenic cause of autism spectrum disorder (ASD), and thus both disorders share many of the same cognitive and behavioral impairments. There is increasing evidence suggesting that dysregulated immune responses play a role in the pathophysiology of ASD; however, the association between FXS and altered immunity requires further investigation.

View Article and Find Full Text PDF

We are glad to share with you our fourth Journal Club and highlight some of the most interesting papers published recently.[..

View Article and Find Full Text PDF

Hypoxia, or oxygen deficiency, is known to be associated with breast tumour progression, resistance to conventional therapies and poor clinical prognosis. The epithelial-mesenchymal transition (EMT) is a process that confers invasive and migratory capabilities as well as stem cell properties to carcinoma cells thus promoting metastatic progression. In this work, we examined the impact of hypoxia on EMT-associated cancer stem cell (CSC) properties, by culturing transformed human mammary epithelial cells under normoxic and hypoxic conditions, and applying in silico mathematical modelling to simulate the impact of hypoxia on the acquisition of CSC attributes and the transitions between differentiated and stem-like states.

View Article and Find Full Text PDF

We are glad to share with you our second and to highlight some of the most interesting papers published recently. [..

View Article and Find Full Text PDF

The number of papers dealing with new or new biological functions of non-coding RNAs published in recent years has indeed exploded. A simple search for 'non-coding RNA' in Pubmed on 10 June 2015 yielded 128,649 articles, half of which were published in the last 10 years [1]. Every researcher in this field knows that he has something to learn and can discover new ideas, new concepts or new tools from studies made in models others than the ones used in its lab.

View Article and Find Full Text PDF

Background: Epithelial-mesenchymal transition (EMT) is known to impart metastasis and stemness characteristics in breast cancer. To characterize the epigenetic reprogramming following Twist1-induced EMT, we characterized the epigenetic and transcriptome landscapes using whole-genome transcriptome analysis by RNA-seq, DNA methylation by digital restriction enzyme analysis of methylation (DREAM) and histone modifications by CHIP-seq of H3K4me3 and H3K27me3 in immortalized human mammary epithelial cells relative to cells induced to undergo EMT by Twist1.

Results: EMT is accompanied by focal hypermethylation and widespread global DNA hypomethylation, predominantly within transcriptionally repressed gene bodies.

View Article and Find Full Text PDF

The aim of this study is to identify and validate copy number aberrations in early-stage primary breast tumors associated with bone or non-bone metastasis. Whole-genome molecular inversion probe arrays were used to evaluate copy number imbalances (CNIs) in breast tumors from 960 early-stage patients with information about site of metastasis. The CoxBoost algorithm was used to select metastasis site-related CNIs and to fit a Cox proportional hazards model.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: