Background: Behavior reflects an organism's health status. Many organisms display a generalized suite of behaviors that indicate infection or predict infection susceptibility. We apply this concept to honey bee aggression, a behavior that has been associated with positive health outcomes in previous studies.
View Article and Find Full Text PDFGene expression changes resulting from social interactions may give rise to long term behavioral change, or simply reflect the activity of neural circuitry associated with behavioral expression. In honey bees, social cues broadly modulate aggressive behavior and brain gene expression. Previous studies suggest that expression changes are limited to contexts in which social cues give rise to stable, relatively long-term changes in behavior.
View Article and Find Full Text PDFMitochondrial activity is highly dynamic in the healthy brain, and it can reflect both the signaling potential and the signaling history of neural circuits. Recent studies spanning invertebrates to mammals have highlighted a role for neural mitochondrial dynamics in learning and memory processes as well as behavior. In the current study, we investigate the interplay between biogenic amine signaling and neural energetics in the honey bee, Apis mellifera.
View Article and Find Full Text PDFNeuronal function demands high-level energy production, and as such, a decline in mitochondrial respiration characterizes brain injury and disease. A growing number of studies, however, link brain mitochondrial function to behavioral modulation in non-diseased contexts. In the honey bee, we show for the first time that an acute social interaction, which invokes an aggressive response, may also cause a rapid decline in brain mitochondrial bioenergetics.
View Article and Find Full Text PDF