Publications by authors named "Joseph H Nuffer"

We identify specific acylphosphatase (AcP) residues that interact with silica nanoparticles (SNPs) using a combined NMR spectroscopy and proteomics-mass spectrometry approach. AcP associated with 4- and 15-nm diameter SNPs through a common and specific interaction surface formed by amino acids from the two α-helices of the protein. Greater retention of native protein structure was obtained on 4-nm SNPs than on 15-nm particles, presumably due to greater surface curvature-induced protein stabilization with the smaller SNPs.

View Article and Find Full Text PDF

We describe a method for determining the orientation of cytochrome c, RNase A, and lysozyme on silica nanoparticles (SNPs) using chemical modification combined with proteolysis-mass spectrometry. The proteins interacted with SNPs through preferential adsorption sites, which are dependent on SNP diameter; 4 nm SNPs induce greater structural stabilization than 15 nm particles, presumably due to greater surface curvature of the former. These results suggest that nanoparticle size and protein structure influence protein orientation on SNPs.

View Article and Find Full Text PDF

Great strides are being made worldwide in our ability to synthesize and assemble nanoscale building blocks to create advanced materials with novel properties and functionalities. The novel properties of nanostructures are derived from their confined sizes and their very large surface-to-volume ratios. Nanostructured surfaces have also been shown to elicit more favorable and selective biomolecule and cellular responses than surfaces at coarser length scales.

View Article and Find Full Text PDF

The structure, thermodynamic and kinetic stability, and activity of cytochrome c (cyt c) on silica nanoparticles (SNPs) of different sizes have been studied. Adsorption of cyt c onto larger SNPs results in both greater disruption of the cyt c global structure and more significant changes of the local heme microenvironment than upon adsorption onto smaller SNPs. The disruption of the heme microenvironment leads to a more solvent-accessible protein active site, as suggested by Soret circular dichroism spectroscopy and through an increase in peroxidase activity as a function of increased SNP size.

View Article and Find Full Text PDF

This paper reports on the unfolding behavior of ribonuclease A (RNase A) on silica nanoparticle surfaces and quantitively demonstrates that nanoscale size and surface curvature play key roles in influencing the stability of adsorbed proteins. Urea denaturation analyses showed that the thermodynamic stability of RNase A decreased upon adsorption onto the nanoparticles, with greater decrease on larger nanoparticles. The stability changes of RNase A correlate well with the changes in the protein-nanoparticle interactions, which increase as the surface contact area and surface charge interaction increases.

View Article and Find Full Text PDF