Histones are genes that regulate chromatin structure. They are present in both eukaryotes and archaea, and form nucleosomes with DNA, but their exact evolutionary origins have hitherto remained a mystery. A longstanding hypothesis is that they have precursors in ribosomal proteins with whom they share much in common in terms of size and chemistry.
View Article and Find Full Text PDFUnlabelled: Protein-protein interaction (PPI) detection is one of the central goals of functional genomics and systems biology. Knowledge about the nature of PPIs can help fill the widening gap between sequence information and functional annotations. Although experimental methods have produced valuable PPI data, they also suffer from significant limitations.
View Article and Find Full Text PDFIn high-dimensional genome-wide (GWA) data, a key challenge is to detect genomic variants that interact in a nonlinear fashion in their association with disease. Identifying such genomic interactions is important for elucidating the inheritance of complex phenotypes and diseases. In this paper, we introduce a new computational method called Informative Bayesian Model Selection (IBMS) that leverages correlation among variants in GWA data due to the linkage disequilibrium to identify interactions accurately in a computationally efficient manner.
View Article and Find Full Text PDFIn recent years, in silico studies and trial simulations have complemented experimental procedures. A model is a description of a system, and a system is any collection of interrelated objects; an object, moreover, is some elemental unit upon which observations can be made but whose internal structure either does not exist or is ignored. Therefore, any network analysis approach is critical for successful quantitative modeling of biological systems.
View Article and Find Full Text PDFCancer has become known as a complex and systematic disease on macroscopic, mesoscopic and microscopic scales. Systems biology employs state-of-the-art computational theories and high-throughput experimental data to model and simulate complex biological procedures such as cancer, which involves genetic and epigenetic, in addition to intracellular and extracellular complex interaction networks. In this paper, different systems biology modeling techniques such as systems of differential equations, stochastic methods, Boolean networks, Petri nets, cellular automata methods and agent-based systems are concisely discussed.
View Article and Find Full Text PDFProtein interactions play an important role in the discovery of protein functions and pathways in biological processes. This is especially true in case of the diseases caused by the loss of specific protein-protein interactions in the organism. The accuracy of experimental results in finding protein-protein interactions, however, is rather dubious and high throughput experimental results have shown both high false positive beside false negative information for protein interaction.
View Article and Find Full Text PDFIn Silico Pharmacol
December 2014
With the growing understanding of complex diseases, the focus of drug discovery has shifted away from the well-accepted "one target, one drug" model, to a new "multi-target, multi-drug" model, aimed at systemically modulating multiple targets. Identification of the interaction between drugs and target proteins plays an important role in genomic drug discovery, in order to discover new drugs or novel targets for existing drugs. Due to the laborious and costly experimental process of drug-target interaction prediction, in silico prediction could be an efficient way of providing useful information in supporting experimental interaction data.
View Article and Find Full Text PDF