Publications by authors named "Joseph Gillen"

Purpose: To develop a 3D downfield (DF) MRSI protocol with whole brain coverage and post-processing pipeline for creation of metabolite maps.

Methods: A 3D, circularly phase-encoded version of the previously developed 2D DF MRSI sequence with spectral-spatial excitation and frequency selective refocusing was implemented and tested in five healthy volunteers at 3T. The DF metabolite maps with a nominal spatial resolution of 0.

View Article and Find Full Text PDF

Purpose: To develop a 3D downfield magnetic resonance spectroscopic imaging (DF-MRSI) protocol with whole brain coverage and post-processing pipeline for creation of metabolite maps.

Methods: A 3D, circularly phase-encoded version of the previously developed 2D DF-MRSI sequence with spectral-spatial excitation and frequency selective refocusing was implemented and tested in 5 healthy volunteers at 3T. Downfield metabolite maps with a nominal spatial resolution of 0.

View Article and Find Full Text PDF

Purpose: To develop an MRSI technique capable of mapping downfield proton resonances in the human brain.

Methods: A spectral-spatial excitation and frequency-selective refocusing scheme, in combination with 2D phase encoding, was developed for mapping of downfield resonances without any perturbation of the water magnetization. An alternative scheme using spectral-spatial refocusing was also investigated for simultaneous detection of both downfield and upfield resonances.

View Article and Find Full Text PDF

The Open Reading Frame 45 (ORF45) of Kaposi sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus-specific, immediate-early, tegument protein required for efficient viral replication and virion production. We have previously shown that ORF45 interacts with the conserved herpesviral protein ORF33 through the highly conserved C-terminal 19 amino acids (C19) of ORF45. Because the deletion of C19 abolished ORF33 accumulation and viral production, we reasoned that this interaction could be critical for viral production and explored as an antiviral target for gammaherpesviruses.

View Article and Find Full Text PDF

Inflammatory response plays an essential role in the resolution of infections. However, inflammation can be detrimental to an organism and cause irreparable damage. For example, during sepsis, a cytokine storm can lead to multiple organ failures and often results in death.

View Article and Find Full Text PDF

Introduction: Studying immune signaling has been critical for our understanding of immunology, pathogenesis, cancer, and homeostasis. To enhance the breadth of the analysis, high throughput methods have been developed to survey multiple areas simultaneously, including transcriptomics, reporter assays, and ELISAs. While these techniques have been extremely informative, mass-spectrometry-based technologies have been gaining momentum and starting to be widely used in the studies of immune signaling and systems immunology.

View Article and Find Full Text PDF

The semi-adiabatic localization by adiabatic selective refocusing (sLASER) sequence provides single-shot full intensity signal with clean localization and minimal chemical shift displacement error and was recommended by the international MRS Consensus Group as the preferred localization sequence at high- and ultra-high fields. Across-vendor standardization of the sLASER sequence at 3 tesla has been challenging due to the B requirements of the adiabatic inversion pulses and maximum B limitations on some platforms. The aims of this study were to design a short-echo sLASER sequence that can be executed within a B limit of 15 μT by taking advantage of gradient-modulated RF pulses, to implement it on three major platforms and to evaluate the between-vendor reproducibility of its perfomance with phantoms and in vivo.

View Article and Find Full Text PDF

In patients with active lupus, spontaneous endotoxemia and possibly tolerance to lipopolysaccharide (LPS) is a potentially adverse complication. Similarly, previous reports have demonstrated that FcGRIIb deficient mice (FcGRIIb-/-; a lupus mouse model) are susceptible to LPS tolerance-induced decreased cytokine responses that inadequate for the organismal control. Thus, understanding the relationship between FcGRIIb and LPS tolerance could improve the therapeutic strategy for lupus.

View Article and Find Full Text PDF

Viral and pathogen protein complexity is often limited by their relatively small genomes, thus critical functions are often accomplished by complexes of host and pathogen proteins. This requirement makes the study of host-pathogen interactions critical for the understanding of pathogenicity and virology. This review article discusses proteomic methods that offer an opportunity to experimentally identify and analyze the binding partners of a target protein and presents the representative studies performed with these methods.

View Article and Find Full Text PDF

Dysfunction of FcGRIIb, the only inhibitory receptor of the FcGR family, is commonly found in the Asian population and is possibly responsible for the extreme endotoxin exhaustion in lupus. Here, the mechanisms of prominent endotoxin (LPS) tolerance in FcGRIIb-/- mice were explored on bone marrow-derived macrophages using phosphoproteomic analysis. As such, LPS tolerance decreased several phosphoproteins in the FcGRIIb-/- macrophage, including protein kinase C-β type II (PRKCB), which was associated with phagocytosis function.

View Article and Find Full Text PDF

Purpose: To develop a fast and automated volume-of-interest (VOI) prescription pipeline (AutoVOI) for single-voxel MRS that removes the need for manual VOI placement, allows flexible VOI planning in any brain region, and enables high inter- and intra-subject consistency of VOI prescription.

Methods: AutoVOI was designed to transfer pre-defined VOIs from an atlas to the 3D anatomical data of the subject during the scan. The AutoVOI pipeline was optimized for consistency in VOI placement (precision), enhanced coverage of the targeted tissue (accuracy), and fast computation speed.

View Article and Find Full Text PDF

Unlabelled: Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of three human malignancies. KSHV ORF36 encodes a serine/threonine viral protein kinase, which is conserved throughout all herpesviruses. Although several studies have identified the viral and cellular substrates of conserved herpesvirus protein kinases (CHPKs), the precise functions of KSHV ORF36 during lytic replication remain elusive.

View Article and Find Full Text PDF

Unlabelled: We recently showed that the interaction between Kaposi's sarcoma-associated herpesvirus (KSHV) tegument proteins ORF33 and ORF45 is crucial for progeny virion production, but the exact functions of KSHV ORF33 during lytic replication were unknown (J. Gillen, W. Li, Q.

View Article and Find Full Text PDF

Invading viral DNA can be recognized by the host cytosolic DNA sensor, cyclic GMP-AMP (cGAMP) synthase (cGAS), resulting in production of the second messenger cGAMP, which directs the adaptor protein STING to stimulate production of type I interferons (IFNs). Although several DNA viruses are sensed by cGAS, viral strategies targeting cGAS are virtually unknown. We report here that Kaposi's sarcoma-associated herpesvirus (KSHV) ORF52, an abundant gammaherpesvirus-specific tegument protein, subverts cytosolic DNA sensing by directly inhibiting cGAS enzymatic activity through a mechanism involving both cGAS binding and DNA binding.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to compare magnetic resonance spectroscopy (MRS) of three different regions of the human brain between 3 and 7 Tesla, using the same subjects and closely matched methodology at both field strengths.

Methods: A semi-LASER (sLASER) pulse sequence with TE 32ms was used to acquire metabolite spectrum along with the water reference at 3T and 7T using similar experimental parameters and hardware at both field strengths (n=4 per region and field). Spectra were analyzed in LCModel using a simulated basis set.

View Article and Find Full Text PDF

Unlabelled: The ORF45 protein of Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus-specific immediate-early tegument protein. Our previous studies have revealed its crucial roles in both early and late stages of KSHV infection. In this study, we surveyed the interactome of ORF45 using a panel of monoclonal antibodies.

View Article and Find Full Text PDF

Purpose: In proton MR spectra of the human brain, relatively broad macromolecule (MM) resonances underlie the narrower signals from metabolites. The purpose of this study was to quantify the MM profile in healthy human brain at 3T and 7T, both in gray matter (anterior cingulate cortex [ACC]) and white matter (centrum semiovale [CSO]).

Methods: A water-suppressed, inversion-recovery pulse sequence was used to null metabolite signals and acquire MM spectra in 20 healthy volunteers using very similar methodology at both field strengths (n = 5 per region and field).

View Article and Find Full Text PDF

Hyperpolarization produces nuclear spin polarization that is several orders of magnitude larger than that achieved at thermal equilibrium thus providing extraordinary contrast and sensitivity. As a parahydrogen induced polarization (PHIP) technique that does not require chemical modification of the substrate to polarize, Signal Amplification by Reversible Exchange (SABRE) has attracted a lot of attention. Using a prototype parahydrogen polarizer, we polarize two drugs used in the treatment of tuberculosis, namely pyrazinamide and isoniazid.

View Article and Find Full Text PDF

Vertigo in and around magnetic resonance imaging (MRI) machines has been noted for years [1, 2]. Several mechanisms have been suggested to explain these sensations [3, 4], yet without direct, objective measures, the cause is unknown. We found that all of our healthy human subjects developed a robust nystagmus while simply lying in the static magnetic field of an MRI machine.

View Article and Find Full Text PDF

Chemical exchange saturation transfer (CEST) is a contrast mechanism that exploits exchange-based magnetization transfer (MT) between solute and water protons. CEST effects compete with direct water saturation and conventional MT processes, and generally can only be quantified through an asymmetry analysis of the water saturation spectrum (Z-spectrum) with respect to the water frequency, a process that is exquisitely sensitive to magnetic field inhomogeneities. Here it is shown that direct water saturation imaging allows measurement of the absolute water frequency in each voxel, allowing proper centering of Z-spectra on a voxel-by-voxel basis independently of spatial B(0) field variations.

View Article and Find Full Text PDF

We studied the neural correlates of rapid eye movement during sleep (REM) by timing REMs from video recording and using rapid event-related functional MRI. Consistent with the hypothesis that REMs share the brain systems and mechanisms with waking eye movements and are visually-targeted saccades, we found REM-locked activation in the primary visual cortex, thalamic reticular nucleus (TRN), 'visual claustrum', retrosplenial cortex (RSC, only on the right hemisphere), fusiform gyrus, anterior cingulate cortex, and the oculomotor circuit that controls awake saccadic eye movements (and subserves awake visuospatial attention). Unexpectedly, robust activation also occurred in non-visual sensory cortices, motor cortex, language areas, and the ascending reticular activating system, including basal forebrain, the major source of cholinergic input to the entire cortex.

View Article and Find Full Text PDF

A method to achieve simultaneous water and lipid suppression is described. The key feature of the new dual suppression technique is the use of the well-known hyperbolic secant (HS) waveform as a 90 degrees saturation pulse. Two HS pulses with opposite frequency offsets are employed either sequentially or simultaneously to saturate resonance frequencies corresponding to water and lipid, while leaving the target spins untouched.

View Article and Find Full Text PDF

Purpose: To use combined proton (1H) and sodium 23 (23Na) magnetic resonance (MR) imaging to noninvasively quantify total tissue sodium concentration and to determine if concentration is altered in malignant human brain tumors.

Materials And Methods: Absolute tissue sodium concentration in malignant gliomas was measured on quantitative three-dimensional 23Na MR images with tissue identification from registered 1H MR images. Concentration was determined in gray matter (GM), white matter (WM), cerebrospinal fluid (CSF), and vitreous humor in 20 patients with pathologically proven malignant brain tumors (astrocytoma, n = 17; oligodendroglioma, n = 3) and in nine healthy volunteers.

View Article and Find Full Text PDF

A simple technique is described for scan time reductions in proton magnetic resonance spectroscopic imaging (MRSI) of the human brain. Scan time is reduced by approximately 35% while preserving spatial resolution by reducing the field of view (FOV) and number of phase-encoding steps in the transverse direction of the brain. A multislice MRSI of the brain is demonstrated which takes approximately 20 min with a square FOV, and 13 min with a reduced FOV.

View Article and Find Full Text PDF