Poly (N-vinylcaprolactam) (PNVCL) and poly (N-isopropylacrylamide) (PNIPAm) are two popular negatively temperature-responsive hydrogels, due to their biocompatibility, softness, hydrophilicity, superabsorbency, viscoelasticity, and near-physiological lower critical solution temperature (LCST). These characteristics make them ideal for biomedical applications. When combined with other materials, hydrogel expansion induces the morphing of the assembly due to internal stress differences.
View Article and Find Full Text PDFFollowing the formulation development from a previous study utilising N-vinylcaprolactam (NVCL) and N-isopropylacrylamide (NIPAm) as monomers, poly(ethylene glycol) dimethacrylate (PEGDMA) as a chemical crosslinker, and Irgacure 2959 as photoinitiator, nanoclay (NC) is now incorporated into the selected formulation for enhanced mechanical performance and swelling ability. In this research, two types of NC, hydrophilic bentonite nanoclay (NCB) and surface-modified nanoclay (NCSM) of several percentages, were included in the formulation. The prepared mixtures were photopolymerised, and the fabricated gels were characterised through Fourier transform infrared spectroscopy (FTIR), cloud-point measurements, ultraviolet (UV) spectroscopy, pulsatile swelling, rheological analysis, and scanning electron microscopy (SEM).
View Article and Find Full Text PDFFenbendazole (FBZ) is a broad-spectrum anthelmintic administered orally to ruminants; nevertheless, its poor water solubility has been the main limitation to reaching satisfactory and sustained levels at the site of the target parasites. Hence, the exploitation of hot-melt extrusion (HME) and micro-injection moulding (µIM) for the manufacturing of extended-release tablets of plasticised solid dispersions of poly(ethylene oxide) (PEO)/polycaprolactone (PCL) and FBZ was investigated due to their unique suitability for semi-continuous manufacturing of pharmaceutical oral solid dosage forms. High-performance liquid chromatography (HPLC) analysis demonstrated a consistent and uniform drug content in the tablets.
View Article and Find Full Text PDFThis study aimed to demonstrate the feasibility of hot-melt extrusion in the development of extended-release formulations of Fenbendazole (Fen) dispersed in PEO/PCL blend-based matrices. Their thermal, physical, chemical and viscosity properties were assessed by differential scanning calorimetry, thermogravimetric analysis/derivative thermogravimetry, Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy, and melt flow index. Drug dispersion was analyzed by scanning electron microscopy with electron dispersive X-ray spectroscopy, and drug release was evaluated by ultraviolet-visible spectroscopy.
View Article and Find Full Text PDF