Regulated intramembrane proteolysis of membrane-embedded substrates by site-2 proteases (S2Ps) is a widespread mechanism of transmembrane signal transduction in bacteria and bacterial pathogens. We previously demonstrated that the Mycobacterium tuberculosis S2P Rip1 is required for full virulence in the mouse model of infection. Rip1 controls transcription in part through proteolysis of three transmembrane anti-sigma factors, anti-SigK, -L, and -M, but there are also Rip1-dependent, SigKLM-independent pathways.
View Article and Find Full Text PDFRegulated intramembrane proteolysis (RIP) is a mechanism of transmembrane signal transduction that functions through intramembrane proteolysis of substrates. We previously reported that the RIP metalloprotease Rv2869c (Rip1) is a determinant of Mycobacterium tuberculosis (Mtb) cell envelope composition and virulence, but the substrates of Rip1 were undefined. Here we show that Rip1 cleaves three transmembrane anti-sigma factors: anti-SigK, anti-SigL and anti-SigM, negative regulators of Sigma K, L and M.
View Article and Find Full Text PDFIntegral beta-barrel proteins (OMPs) are a major class of outer membrane proteins in Gram-negative bacteria. In Escherichia coli, these proteins are synthesized in the cytoplasm, translocated across the inner membrane via the Sec machinery, and assembled in the outer membrane through an unknown mechanism that requires the outer membrane YaeT complex and the periplasmic chaperones SurA, DegP, and Skp. Here, we have established the relationship between these three chaperones providing insight into the mechanism of OMP biogenesis using depletion analysis.
View Article and Find Full Text PDFA major role of the outer membrane (OM) of Gram-negative bacteria is to provide a protective permeability barrier for the cell, and proper maintenance of the OM is required for cellular viability. OM biogenesis requires the coordinated assembly of constituent lipids and proteins via dedicated OM assembly machineries. We have previously shown that, in Escherichia coli, the multicomponent YaeT complex is responsible for the assembly of OM beta-barrel proteins (OMPs).
View Article and Find Full Text PDFRecent advances in the study of bacterial membranes have led to the identification of a multicomponent YaeT complex in the outer membrane (OM) of Gram-negative bacteria that is involved in the targeting and folding of beta-barrel outer membrane proteins (OMPs). In Escherichia coli, this complex consists of an essential OMP, YaeT, and three OM lipoproteins, YfgL, NlpB and YfiO. YfiO is the only essential lipoprotein component of the complex.
View Article and Find Full Text PDFComponents within synthetic chemical and natural product extract libraries often interfere with fluorescence-based assays. Fluorescence interference can result when the intrinsic spectral properties of colored compounds overlap with the fluorescent probes. Typically, fluorescence-based protease assays use peptide amidomethylcoumarin derivatives as substrates.
View Article and Find Full Text PDF