An area of active research in DNA microarray analysis focuses on identifying differentially expressed genes between normal and malignant tissues. The analysis is complicated by the presence of several unreliable expression readings. Here, we illustrate a methodology where the expression estimates are modeled as censored data and discriminating genes are selected using ANOVA-based criteria.
View Article and Find Full Text PDFThis article analyzes quality of life (QOL) data from an Eastern Cooperative Oncology Group (ECOG) melanoma trial that compared treatment with ganglioside vaccination to treatment with high-dose interferon. The analysis of this data set is challenging due to several difficulties, namely, nonignorable missing longitudinal responses and baseline covariates. Hence, we propose a selection model for estimating parameters in the normal random effects model with nonignorable missing responses and covariates.
View Article and Find Full Text PDFComplex issues arise when investigating the association between longitudinal immunologic measures and time to an event, such as time to relapse, in cancer vaccine trials. Unlike many clinical trials, we may encounter patients who are cured and no longer susceptible to the time-to-event endpoint. If there are cured patients in the population, there is a plateau in the survival function, S(t), after sufficient follow-up.
View Article and Find Full Text PDFIn DNA microarray analysis, there is often interest in isolating a few genes that best discriminate between tissue types. This is especially important in cancer, where different clinicopathologic groups are known to vary in their outcomes and response to therapy. The identification of a small subset of gene expression patterns distinctive for tumor subtypes can help design treatment strategies and improve diagnosis.
View Article and Find Full Text PDFWe introduce a method of parameter estimation for a random effects cure rate model. We also propose a methodology that allows us to account for nonignorable missing covariates in this class of models. The proposed method corrects for possible bias introduced by complete case analysis when missing data are not missing completely at random and is motivated by data from a pair of melanoma studies conducted by the Eastern Cooperative Oncology Group in which clustering by cohort or time of study entry was suspected.
View Article and Find Full Text PDFThis article proposes a new semiparametric Bayesian hierarchical model for the joint modeling of longitudinal and survival data. We relax the distributional assumptions for the longitudinal model using Dirichlet process priors on the parameters defining the longitudinal model. The resulting posterior distribution of the longitudinal parameters is free of parametric constraints, resulting in more robust estimates.
View Article and Find Full Text PDFThe objective of a chronic rodent bioassay is to assess the impact of a chemical compound on the development of tumors. However, most tumor types are not observable prior to necropsy, making direct estimation of the tumor incidence rate problematic. In such cases, estimation can proceed only if the study incorporates multiple interim sacrifices or we make use of simplified parametric or nonparametric models.
View Article and Find Full Text PDFIn many observational studies, individuals are measured repeatedly over time, although not necessarily at a set of prespecified occasions. Instead, individuals may be measured at irregular intervals, with those having a history of poorer health outcomes being measured with somewhat greater frequency and regularity; i.e.
View Article and Find Full Text PDFLinear regression is one of the most popular statistical techniques. In linear regression analysis, missing covariate data occur often. A recent approach to analyse such data is a weighted estimating equation.
View Article and Find Full Text PDFWe propose methods for Bayesian inference for missing covariate data with a novel class of semiparametric survival models with a cure fraction. We allow the missing covariates to be either categorical or continuous and specify a parametric distribution for the covariates that is written as a sequence of one dimensional conditional distributions. We assume that the missing covariates are missing at random (MAR) throughout.
View Article and Find Full Text PDFWe present a method for estimating the parameters in random effects models for survival data when covariates are subject to missingness. Our method is more general than the usual frailty model as it accommodates a wide range of distributions for the random effects, which are included as an offset in the linear predictor in a manner analogous to that used in generalized linear mixed models. We propose using a Monte Carlo EM algorithm along with the Gibbs sampler to obtain parameter estimates.
View Article and Find Full Text PDF