Recent studies in animal models of Alzheimer's disease (AD) show that amyloid-beta (Aβ) misfolding can be transmissible; however, the mechanisms by which this process occurs have not been fully explored. The goal of this study was to analyze whether depletion of aggregates from an AD brain suppresses its in vivo "seeding" capability. Removal of aggregates was performed by using the Aggregate Specific Reagent 1 (ASR1) compound which has been previously described to specifically bind misfolded species.
View Article and Find Full Text PDFDiseases associated with the misfolding of endogenous proteins, such as Alzheimer's disease and type II diabetes, are becoming increasingly prevalent. The pathophysiology of these diseases is not totally understood, but mounting evidence suggests that the misfolded protein aggregates themselves may be toxic to cells and serve as key mediators of cell death. As such, an assay that can detect aggregates in a sensitive and selective fashion could provide the basis for early detection of disease, before cellular damage occurs.
View Article and Find Full Text PDFAlzheimer's Disease (AD) is the most prevalent form of dementia worldwide, yet the development of therapeutics has been hampered by the absence of suitable biomarkers to diagnose the disease in its early stages prior to the formation of amyloid plaques and the occurrence of irreversible neuronal damage. Since oligomeric Aβ species have been implicated in the pathophysiology of AD, we reasoned that they may correlate with the onset of disease. As such, we have developed a novel misfolded protein assay for the detection of soluble oligomers composed of Aβ x-40 and x-42 peptide (hereafter Aβ40 and Aβ42) from cerebrospinal fluid (CSF).
View Article and Find Full Text PDFJ Neuropathol Exp Neurol
December 2002
While it is known that autoimmune cells can protect against cell damage following traumatic injury of the brain, the role of autoantibodies in brain injury is less clear. Here we present evidence in adult rats that following a cortical lesion of the brain, circulating IgG autoantibodies bind to dying neurons in the vicinity of the lesion. At intervals that ranged from 4 h to 7 days after making a unilateral lesion of visual cortex, we observed neurons near the lesion that were immunopositive for rat IgG.
View Article and Find Full Text PDF