Publications by authors named "Joseph F Woods"

The extent of the influence that molecular curvature plays on the self-assembly of supramolecular polymers remains an open question in the field. We began addressing this fundamental question with the introduction of "carpyridines", which are saddle-shaped monomers that can associate with one another through π-π interactions and in which the rotational and translational movements are restricted. The topography displayed by the monomers led, previously, to the assembly of highly ordered 2D materials even in the absence of strong directional interactions such as hydrogen bonding.

View Article and Find Full Text PDF

Two-dimensional (2D) materials are a key target for many applications in the modern day. Self-assembly is one approach that can bring us closer to this goal, which usually relies upon strong, directional interactions instead of covalent bonds. Control over less directional forces is more challenging and usually does not result in as well-defined materials.

View Article and Find Full Text PDF

Self-assembly and molecular recognition are critical processes both in life and material sciences. They usually depend on strong, directional non-covalent interactions to gain specificity and to make long-range organization possible. Most supramolecular constructs are also at least partially governed by topography, whose role is hard to disentangle.

View Article and Find Full Text PDF

New strategies for synthesizing polyyne polyrotaxanes are being developed as an approach to stable carbyne "insulated molecular wires". Here we report an active metal template route to polyyne [3]rotaxanes, using dicobalt carbonyl masked alkyne equivalents. We synthesized two [3]rotaxanes, both with the same C polyyne dumbbell component, one with a phenanthroline-based macrocycle and one using a 2,6-pyridyl cycloparaphenylene nanohoop.

View Article and Find Full Text PDF