Publications by authors named "Joseph F Hassler"

An H-polymer has an architecture that consists of four branches symmetrically attached to the ends of a polymer backbone, similar in shape to the letter "H". Here, a renewable H-polymer efficiently synthesized using only ring-opening transesterification is demonstrated. The strategy relies on a tetrafunctional poly(±-lactide) macroinitiator, from which four poly(±-lactide) branches are grown simultaneously.

View Article and Find Full Text PDF

Poloxamers, a class of biocompatible, commercially available amphiphilic block polymers (ABPs) comprising poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) blocks, interact with phospholipid bilayers, resulting in altered mechanical and surface properties. These block copolymers are useful in a variety of applications including therapeutics for Duchenne muscular dystrophy, as cell membrane stabilizers, and for drug delivery, as liposome surface modifying agents. Hydrogen bonding between water and oxygen atoms in PEO and PPO units results in thermoresponsive behavior because the bound water shell around both blocks dehydrates as the temperature increases.

View Article and Find Full Text PDF

Poloxamers─triblock copolymers consisting of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO)─have demonstrated cell membrane stabilization efficacy against numerous types of stress. However, the mechanism responsible for this stabilizing effect remains elusive, hindering engineering of more effective therapeutics. Bottlebrush polymers have a wide parameter space and known relationships between architectural parameters and polymer properties, enabling their use as a tool for mechanistic investigations of polymer-lipid bilayer interactions.

View Article and Find Full Text PDF

Bottlebrush polymers are characterized by an expansive parameter space, including graft length and spacing along the backbone, and these features impact various structural and physical properties such as molecular diffusion and bulk viscosity. In this work, we report a synthetic strategy for making grafted block polymers with poly(propylene oxide) and poly(ethylene oxide) side chains, bottlebrush analogues of poloxamers. Combined anionic and sequential ring-opening metathesis polymerization yielded low dispersity polymers, at full conversion of the macromonomers, with control over graft length, graft end-groups, and overall molecular weight.

View Article and Find Full Text PDF

Cationic charge and hydrophobicity have long been understood to drive the potency and selectivity of antimicrobial peptides (AMPs). However, these properties alone struggle to guide broad success in vivo, where AMPs must differentiate bacterial and mammalian cells, while avoiding complex barriers. New parameters describing the biophysical processes of membrane disruption could provide new opportunities for antimicrobial optimization.

View Article and Find Full Text PDF