Obstructive sleep apnea (OSA) is characterized by repetitive partial/complete collapse of the pharynx during sleep, which results in apnea/hypopnea leading to arterial oxygen desaturations and arousals. Repetitive apnea/hypopnea-arousal episodes cause hypoxia/reoxygenation cycles, which increase free radical generation and oxidative stress that cause motor/sensory nerve impairments and muscle damage. We hypothesize that antioxidants may protect and/or reverse from oxidative stress-induced damage in OSA patients.
View Article and Find Full Text PDFWe have reported that pretreatment with the clinically approved superoxide dismutase mimetic, Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl), blunts the cardiorespiratory depressant responses elicited by a subsequent injection of fentanyl, in halothane-anesthetized rats. The objective of the present study was to determine whether Tempol is able to reverse the effects of morphine on arterial blood-gas (ABG) chemistry in freely-moving Sprague Dawley rats. The intravenous injection of morphine (10 mg/kg) elicited substantial decreases in pH, pO and sO that were accompanied by substantial increases in pCO and Alveolar-arterial gradient, which results in diminished gas-exchange within the lungs.
View Article and Find Full Text PDFOpen J Mol Integr Physiol
November 2013
The aim of this study was to determine whether morphine depresses the ventilatory responses elicited by a hypoxic challenge (10% O, 90% N) in conscious rats at a time when the effects of morphine on arterial blood gas (ABG) chemistry, Alveolar-arterial (A-a) gradient and minute ventilation (V) had completely subsided. In vehicle-treated rats, each episode of hypoxia stimulated ventilatory function and the responses generally subsided during each normoxic period. Morphine (5 mg/kg, i.
View Article and Find Full Text PDFThis study explored the concept that morphine has latent deleterious actions on the ventilatory control systems that respond to a hypoxic-hypercapnic challenge. In this study, we examined the ventilatory responses elicited by hypoxic-hypercapnic challenge in conscious rats at a time when the effects of morphine (10 mg/kg) on arterial blood-gas chemistry and minute ventilation had subsided. Morphine induced pronounced changes in arterial blood-gas chemistry (e.
View Article and Find Full Text PDFThis study determined the effects of the peripherally restricted μ-opiate receptor (μ-OR) antagonist, naloxone methiodide (NLXmi) on fentanyl (25μg/kg, i.v.)-induced changes in (1) analgesia, (2) arterial blood gas chemistry (ABG) and alveolar-arterial gradient (A-a gradient), and (3) ventilatory parameters, in conscious rats.
View Article and Find Full Text PDF