The draft ICH M7 guidance (US FDA, 2013) recommends that the computational assessment of bacterial mutagenicity for the qualification of impurities in pharmaceuticals be performed using an expert rule-based method and a second statistically-based (Q)SAR method. The public nonproprietary 6489 compound Hansen benchmark mutagenicity data set was used as an external validation data set for Toxtree, a free expert rule-based SAR software. This is the largest known external validation of Toxtree.
View Article and Find Full Text PDFGenotoxicity hazard identification is part of the impurity qualification process for drug substances and products, the first step of which being the prediction of their potential DNA reactivity using in silico (quantitative) structure-activity relationship (Q)SAR models/systems. This white paper provides information relevant to the development of the draft harmonized tripartite guideline ICH M7 on potentially DNA-reactive/mutagenic impurities in pharmaceuticals and their application in practice. It explains relevant (Q)SAR methodologies as well as the added value of expert knowledge.
View Article and Find Full Text PDFThe Threshold of Toxicological Concern (TTC) is a level of exposure to a genotoxic impurity that is considered to represent a negligible risk to humans. The TTC was derived from the results of rodent carcinogenicity TD50 values that are a measure of carcinogenic potency. The TTC currently sets a default limit of 1.
View Article and Find Full Text PDFRegul Toxicol Pharmacol
June 2009
This report describes an in silico methodology to predict off-target pharmacologic activities and plausible mechanisms of action (MOAs) associated with serious and unexpected hepatobiliary and urinary tract adverse effects in human patients. The investigation used a database of 8,316,673 adverse event (AE) reports observed after drugs had been marketed and AEs noted in the published literature that were linked to 2124 chemical structures and 1851 approved clinical indications. The Integrity database of drug patent and literature studies was used to find pharmacologic targets and proposed clinical indications.
View Article and Find Full Text PDFRegul Toxicol Pharmacol
June 2009
This report describes the development of quantitative structure-activity relationship (QSAR) models for predicting rare drug-induced liver and urinary tract injury in humans based upon a database of post-marketing adverse effects (AEs) linked to approximately 1600 chemical structures. The models are based upon estimated population exposure using AE proportional reporting ratios. Models were constructed for 5 types of liver injury (liver enzyme disorders, cytotoxic injury, cholestasis and jaundice, bile duct disorders, gall bladder disorders) and 6 types of urinary tract injury (acute renal disorders, nephropathies, bladder disorders, kidney function tests, blood in urine, urolithiases).
View Article and Find Full Text PDFThe Informatics and Computational Safety Analysis Staff at the US FDA's Center for Drug Evaluation and Research has created a database of pharmaceutical adverse effects (AEs) linked to pharmaceutical chemical structures and estimated population exposures. The database is being used to develop quantitative structure-activity relationship (QSAR) models for the prediction of drug-induced liver and renal injury, as well as to identify relationships among AEs. The post-market observations contained in the database were obtained from FDA's Spontaneous Reporting System (SRS) and the Adverse Event Reporting System (AERS) accessed through Elsevier PharmaPendium software.
View Article and Find Full Text PDFABSTRACT Drug-induced phospholipidosis (PL) is a condition characterized by the accumulation of phospholipids and drug in lysosomes, and is found in a variety of tissue types. PL is frequently manifested in preclinical studies and may delay or prevent the development of pharmaceuticals. This report describes the construction of a database of PL findings in a variety of animal species and its use as a training data set for computational toxicology software.
View Article and Find Full Text PDFABSTRACT Genetic toxicity testing is a critical parameter in the safety assessment of pharmaceuticals, food constituents, and environmental and industrial chemicals. Quantitative structure-activity relationship (QSAR) software offers a rapid, cost-effective means of prioritizing the genotoxic potential of chemicals. Our goal is to develop and validate a complete battery of complementary QSAR models for genetic toxicity.
View Article and Find Full Text PDFABSTRACT This report describes a coordinated use of four quantitative structure-activity relationship (QSAR) programs and an expert knowledge base system to predict the occurrence and the mode of action of chemical carcinogenesis in rodents. QSAR models were based upon a weight-of-evidence paradigm of carcinogenic activity that was linked to chemical structures (n = 1,572). Identical training data sets were configured for four QSAR programs (MC4PC, MDL-QSAR, BioEpisteme, and Leadscope PDM), and QSAR models were constructed for the male rat, female rat, composite rat, male mouse, female mouse, composite mouse, and rodent composite endpoints.
View Article and Find Full Text PDFThis report presents a comparison of the predictive performance of MC4PC and MDL-QSAR software as well as a method for combining the predictions from both programs to increase overall accuracy. The conclusions are based on 10 x 10% leave-many-out internal cross-validation studies using 1540 training set compounds with 2-year rodent carcinogenicity findings. The models were generated using the same weight of evidence scoring method previously developed [Matthews, E.
View Article and Find Full Text PDFConsistent with the U.S. Food and Drug Administration (FDA) Critical Path Initiative, predictive toxicology software programs employing quantitative structure-activity relationship (QSAR) models are currently under evaluation for regulatory risk assessment and scientific decision support for highly sensitive endpoints such as carcinogenicity, mutagenicity and reproductive toxicity.
View Article and Find Full Text PDFExpert Opin Drug Metab Toxicol
February 2007
The European Chemicals Bureau and the Organisation for Economic Cooperation and Development are currently compiling a sanctioned list of quantitative structure-activity relationship (QSAR) risk assessment models and data sets to predict the physiological properties, environmental fate, ecological effects and human health effects of new and existing chemicals in commerce in the European Union. This action implements the technical requirements of the European Commission's Registration, Evaluation and Authorisation of Chemicals legislation. The goal is to identify a battery of QSARs that can furnish rapid, reliable and cost-effective decision support information for regulatory decisions that can substitute for results from animal studies.
View Article and Find Full Text PDFActive ingredients in pharmaceutical products undergo extensive testing to ensure their safety before being made available to the American public. A consideration during the regulatory review process is the safety of pharmaceutical contaminants and degradents which may be present in the drug product at low levels. Several published guidances are available that outline the criteria for further testing of these impurities to assess their toxic potential, where further testing is in the form of a battery of toxicology assays and the identification of known structural alerts.
View Article and Find Full Text PDFA weight of evidence (WOE) reproductive and developmental toxicology (reprotox) database was constructed that is suitable for quantitative structure-activity relationship (QSAR) modeling and human hazard identification of untested chemicals. The database was derived from multiple publicly available reprotox databases and consists of more than 10,000 individual rat, mouse, or rabbit reprotox tests linked to 2134 different organic chemical structures. The reprotox data were classified into seven general classes (male reproductive toxicity, female reproductive toxicity, fetal dysmorphogenesis, functional toxicity, mortality, growth, and newborn behavioral toxicity), and 90 specific categories as defined in the source reprotox databases.
View Article and Find Full Text PDFResults of genetic toxicology tests are used by FDA's Center for Drug Evaluation and Research as a surrogate for carcinogenicity data during the drug development process. Mammalian in vitro assays have a high frequency of positive results which can impede or derail the drug development process. To reduce the risk of such delays, most pharmaceutical companies conduct early non-GLP (good laboratory practices) studies to eliminate drug candidate with mutagenic or clastogenic activity.
View Article and Find Full Text PDFThis report describes the construction, optimization and validation of a battery of quantitative structure-activity relationship (QSAR) models to predict reproductive and developmental (reprotox) hazards of untested chemicals. These models run with MC4PC software to predict seven general reprotox classes: male and female reproductive toxicity, fetal dysmorphogenesis, functional toxicity, mortality, growth, and newborn behavioral toxicity. The reprotox QSARs incorporate a weight of evidence paradigm using rats, mice, and rabbit reprotox study data and are designed to identify trans-species reprotoxicants.
View Article and Find Full Text PDFThe FDA's Spontaneous Reporting System (SRS) database contains over 1.5 million adverse drug reaction (ADR) reports for 8620 drugs/biologics that are listed for 1191 Coding Symbols for Thesaurus of Adverse Reaction (COSTAR) terms of adverse effects. We have linked the trade names of the drugs to 1861 generic names and retrieved molecular structures for each chemical to obtain a set of 1515 organic chemicals that are suitable for modeling with commercially available QSAR software packages.
View Article and Find Full Text PDFA discriminant analysis model is presented for carcinogenic risk. The data set is obtained from the two-year rodent study FDA/CDER database and was divided into a training set of 1022 organic compounds and an external validation test set of 50 compounds. The model is designed to use as a decision support tool for a defined decision threshold, and is thus a binary discrimination into "high risk" and "low risk" categories.
View Article and Find Full Text PDFThe primary objective of this investigation was to develop a QSAR model to estimate the no effect level (NOEL) of chemicals in humans using data derived from pharmaceutical clinical trials and the MCASE software program. We believe that a NOEL model derived from human data provides a more specific estimate of the toxic dose threshold of chemicals in humans compared to current risk assessment models which extrapolate from animals to humans employing multiple uncertainty safety factors. A database of the maximum recommended therapeutic dose (MRTD) of marketed pharmaceuticals was compiled.
View Article and Find Full Text PDFA retrospective analysis of standard genetic toxicity (genetox) tests, reproductive and developmental toxicity (reprotox) studies, and rodent carcinogenicity bioassays (rcbioassay) was performed to identify the genetox and reprotox endpoints whose results best correlate with rcbioassay observations. A database of 7205 chemicals with genetox (n = 4961), reprotox (n = 2173), and rcbioassay (n = 1442) toxicity data was constructed; 1112 of the chemicals have both genetox and rcbioassay data and 721 chemicals have both reprotox and rcbioassay data. This study differed from previous studies by using conservative weight of evidence criteria to classify chemical carcinogens, data from 63 genetox and reprotox toxicological endpoints, and a new statistical parameter of correlation indicator (CI, the average of specificity and positive predictivity) to identify good surrogate endpoints for predicting carcinogenicity.
View Article and Find Full Text PDFThis study examined a novel method to identify carcinogens that employed expanded data sets composed of in silico data pooled with actual experimental genetic toxicity (genetox) and reproductive and developmental toxicity (reprotox) data. We constructed 21 modules using the MC4PC program including 13 of 14 (11 genetox and 3 reprotox) tests that we found correlated with results of rodent carcinogenicity bioassays (rcbioassays) [Matthews, E.J.
View Article and Find Full Text PDFQuantitative structure-activity relationship (QSAR) software offers a rapid, cost effective means of prioritizing the mutagenic potential of chemicals. MDL QSAR models were developed using atom-type E-state indices and non-parametric discriminant analysis. Models were developed for Salmonella typhimurium gene mutation, combining results from strains TA97, TA98, TA100, TA1535, TA1536, TA1537, and TA1538 (n=3228), and Escherichia coli gene mutation tests WP2, WP100, and polA (n=472).
View Article and Find Full Text PDFEstimating the maximum recommended starting dose (MRSD) of a pharmaceutical for phase I human clinical trials and the no observed effect level (NOEL) for non-pharmaceuticals is currently based exclusively on an extrapolation of the results of animal toxicity studies. This process is inexact and requires the results of toxicity studies in multiple species (rat, dog, and monkey) to identify the no observed adverse effect level (NOAEL) and most sensitive test species. Multiple uncertainty (safety) factors are also necessary to compensate for incompatibility and uncertainty underlying the extrapolation of animal toxicity to humans.
View Article and Find Full Text PDFMDL QSAR (formerly SciVision QSAR IS) software is one of the several software systems under evaluation by the Informatics and Computational Safety Analysis Staff (ICSAS) of the FDA Center for Drug Evaluation and Research for regulatory and scientific decision support applications. MDL QSAR software contains an integrated set of tools for similarity searching, compound clustering, and modeling molecular structure related parameters that includes 240 electrotopological E-state, connectivity, and other descriptors. These molecular descriptors can be statistically correlated with toxicological or biological endpoints.
View Article and Find Full Text PDF