Angew Chem Int Ed Engl
September 2024
Understanding the diverse electrochemical reactions occurring at electrode-electrolyte interfaces (EEIs) is a critical challenge to developing more efficient energy conversion and storage technologies. Establishing a predictive molecular-level understanding of solid electrolyte interphases (SEIs) is challenging due to the presence of multiple intertwined chemical and electrochemical processes occurring at battery electrodes. Similarly, chemical conversions in reactive electrochemical systems are often influenced by the heterogeneous distribution of active sites, surface defects, and catalyst particle sizes.
View Article and Find Full Text PDFHerein, we report a new class of electrophotocatalysts, polycyclic aromatic hydrocarbons, that promote the reduction of unactivated carbonyl compounds to generate versatile ketyl radical intermediates. This catalytic platform enables previously challenging intermolecular ketyl radical coupling reactions, including those that classic reductants (e.g.
View Article and Find Full Text PDFUnderstanding molecular-level transformations resulting from electrochemical reactions is important in designing efficient and reliable energy technologies. In this work, a novel integrated scanning electrochemical cell microspectroscopy (iSECCMS) capability is developed by combining a high spatial resolution electrochemical scanning probe with fluorescence spectroscopy. Using 6-carboxyfluorescein as a fluorescent probe, the iSECCMS platform is employed to measure the effect of the detrimental generation of reactive oxygen species (ROS) formed at the active sites of oxygen reduction reaction (ORR) catalysts.
View Article and Find Full Text PDF