Publications by authors named "Joseph E Wedekind"

RNA provides the genetic blueprint for many pathogenic viruses, including SARS-CoV-2. The propensity of RNA to fold into specific tertiary structures enables the biomolecular recognition of cavities and crevices suited for the binding of drug-like molecules. Despite increasing interest in RNA as a target for chemical biology and therapeutic applications, the development of molecules that recognize RNA with high affinity and specificity represents a significant challenge.

View Article and Find Full Text PDF

Riboswitches sense specific cellular metabolites, leading to messenger RNA conformational changes that regulate downstream genes. Here, we review the three known prequeosine (preQ) riboswitch classes, which encompass five gene-regulatory motifs derived from distinct consensus models of folded RNA pseudoknots. Structural and functional analyses reveal multiple gene-regulation strategies ranging from partial occlusion of the ribosome-binding Shine-Dalgarno sequence (SDS), SDS sequestration driven by kinetic or thermodynamic folding pathways, direct preQ recognition by the SDS, and complete SDS burial with in the riboswitch architecture.

View Article and Find Full Text PDF

Riboswitches are structured RNAs that sense small molecules to control expression. Prequeuosine1 (preQ1)-sensing riboswitches comprise three classes (I, II and III) that adopt distinct folds. Despite this difference, class II and III riboswitches each use 10 identical nucleotides to bind the preQ1 metabolite.

View Article and Find Full Text PDF

Bacterial riboswitches are structured RNAs that bind small metabolites to control downstream gene expression. Two riboswitch classes have been reported to sense nicotinamide adenine dinucleotide (NAD), which plays a key redox role in cellular metabolism. The NAD-I (class I) riboswitch stands out because it comprises two homologous, tandemly arranged domains.

View Article and Find Full Text PDF

Riboswitches are small noncoding RNAs found primarily in the 5' leader regions of bacterial messenger RNAs where they regulate expression of downstream genes in response to binding one or more cellular metabolites. Such noncoding RNAs are often regulated at the translation level, which is thought to be mediated by the accessibility of the Shine-Dalgarno sequence (SDS) ribosome-binding site. Three classes (I-III) of prequeuosine (preQ)-sensing riboswitches are known that control translation.

View Article and Find Full Text PDF

The first RNA category of the Critical Assessment of Techniques for Structure Prediction competition was only made possible because of the scientists who provided experimental structures to challenge the predictors. In this article, these scientists offer a unique and valuable analysis of both the successes and areas for improvement in the predicted models. All 10 RNA-only targets yielded predictions topologically similar to experimentally determined structures.

View Article and Find Full Text PDF

Isothermal titration calorimetry (ITC) is a powerful biophysical tool to characterize energetic profiles of biomacromolecular interactions without any alteration of the underlying chemical structures. In this protocol, we describe procedures for performing, analyzing, and interpreting ITC data obtained from a cooperative riboswitch-ligand interaction.

View Article and Find Full Text PDF

Riboswitches are structured non-coding RNAs often located upstream of essential genes in bacterial messenger RNAs. Such RNAs regulate expression of downstream genes by recognizing a specific cellular effector. Although nearly 50 riboswitch classes are known, only a handful recognize multiple effectors.

View Article and Find Full Text PDF

RNA represents a potential target for new antiviral therapies, which are urgently needed to address public health threats such as the human immunodeficiency virus (HIV). We showed previously that the interaction between the viral Tat protein and the HIV-1 trans-activation response (TAR) RNA was blocked by TB-CP-6.9a.

View Article and Find Full Text PDF

RNA plays a central role in all organisms and can fold into complex structures to orchestrate function. Visualization of such structures often requires crystallization, which can be a bottleneck in the structure-determination process. To promote crystallization, an RNA-recognition motif (RRM) of the U1A spliceosomal protein has been co-opted as a crystallization module.

View Article and Find Full Text PDF

RNA recognition by proteins is central to biology. Here we demonstrate the existence of a recurrent structural motif, the "arginine fork", that codifies arginine readout of cognate backbone and guanine nucleobase interactions in a variety of protein-RNA complexes derived from viruses, metabolic enzymes, and ribosomes. Nearly 30 years ago, a theoretical arginine fork model was posited to account for the specificity between the HIV-1 Tat protein and TAR RNA.

View Article and Find Full Text PDF

RNA-protein interfaces control key replication events during the HIV-1 life cycle. The viral -activator of transcription (Tat) protein uses an archetypal arginine-rich motif (ARM) to recruit the host positive transcription elongation factor b (pTEFb) complex onto the viral -activation response (TAR) RNA, leading to activation of HIV transcription. Efforts to block this interaction have stimulated production of biologics designed to disrupt this essential RNA-protein interface.

View Article and Find Full Text PDF

Riboswitches are structured RNA motifs that recognize metabolites to alter the conformations of downstream sequences, leading to gene regulation. To investigate this molecular framework, we determined crystal structures of a preQ1-I riboswitch in effector-free and bound states at 2.00 Å and 2.

View Article and Find Full Text PDF

Riboswitches are a class of nonprotein-coding RNAs that directly sense cellular metabolites to regulate gene expression. They are model systems for analyzing RNA-ligand interactions and are established targets for antibacterial agents. Many studies have analyzed the ligand-binding properties of riboswitches, but this work has outpaced our understanding of the underlying chemical pathways that govern riboswitch-controlled gene expression.

View Article and Find Full Text PDF

Small molecules and short peptides that potently and selectively bind RNA are rare, making the molecular structures of these complexes highly exceptional. Accordingly, several recent investigations have provided unprecedented structural insights into how peptides and proteins recognize the HIV-1 transactivation response (TAR) element, a 59-nucleotide-long, noncoding RNA segment in the 5' long terminal repeat region of viral transcripts. Here, we offer an integrated perspective on these advances by describing earlier progress on TAR binding to small molecules, and by drawing parallels to recent successes in the identification of compounds that target the hepatitis C virus internal ribosome entry site (IRES) and the flavin-mononucleotide riboswitch.

View Article and Find Full Text PDF

PreQ riboswitches regulate the synthesis of the hypermodified tRNA base queuosine by sensing the pyrrolopyrimidine metabolite preQ. Here, we use single-molecule FRET to interrogate the structural dynamics of apo and preQ-bound states of the preQ-II riboswitch from . We find that the apo-form of the riboswitch spontaneously samples multiple conformations.

View Article and Find Full Text PDF

Natural and lab-evolved proteins often recognize their RNA partners with exquisite affinity. Structural analysis of such complexes can offer valuable insight into sequence-selective recognition that can be exploited to alter biological function. Here, we describe the structure of a lab-evolved RNA recognition motif (RRM) bound to the HIV-1 trans-activation response (TAR) RNA element at 1.

View Article and Find Full Text PDF

Noncoding RNAs engage in numerous biological activities including gene regulation. To fully understand RNA function it is necessary to probe biologically relevant conformations in living cells. To address this challenge, we coupled RNA-mediated regulation of the green fluorescent protein (GFP)uv-reporter gene to icSHAPE (in cell Selective 2'-Hydroxyl Acylation analyzed by Primer Extension).

View Article and Find Full Text PDF

Divalent ions fulfill essential cellular roles and are required for virulence by certain bacteria. Free intracellular Mg can approach 5 mm, but at this level Mn, Ni, or Co can be growth-inhibitory, and magnesium fluoride is toxic. To maintain ion homeostasis, many bacteria have evolved ion sensors embedded in the 5'-leader sequences of mRNAs encoding ion uptake or efflux channels.

View Article and Find Full Text PDF

Ribozymes and riboswitches are examples of non-protein-coding (nc)RNA molecules that achieve biological activity by adopting complex three-dimensional folds. Visualization of such molecules at near-atomic resolution can enhance our understanding of how chemical groups are organized spatially, thereby providing novel insight into function. This approach has its challenges, which mainly entail sample crystallization followed by the application of empirical, structure-determination methods that often include experimental "phasing" of X-ray diffraction data.

View Article and Find Full Text PDF

Riboswitches are RNA molecules that regulate gene expression using conformational change, affected by binding of small molecule ligands. A crystal structure of a ligand-bound class II preQ1 riboswitch has been determined in a previous structural study. To gain insight into the dynamics of this riboswitch in solution, eight total molecular dynamic simulations, four with and four without ligand, were performed using the Amber force field.

View Article and Find Full Text PDF
Article Synopsis
  • PreQ1-III riboswitches are RNA components that regulate bacterial genes in response to the ligand preQ1, which is crucial for the formation of a key tRNA base.
  • Unlike other riboswitches, the preQ1-III riboswitch has a unique HLout-type structure that doesn't include its ribosome-binding site (RBS) in its folded form.
  • The study reveals that preQ1 binding leads to structural changes, allowing the RBS to rapidly associate and dissociate, highlighting a novel dynamic mechanism of gene regulation in bacteria.
View Article and Find Full Text PDF