During automotive engine operation, water may contaminate engine oil, inhibiting its role in maintaining safe engine operation. In many cases, engine oil must be capable of emulsifying any water contamination to avoid such problems. This study focuses on the impact of small molecule surfactant concentration structure and concentration in emulsions comprised of engine oil, water, and E85 fuel to understand the effects on emulsion stability and formulation optimization.
View Article and Find Full Text PDFThe molecular structure of lubricant additives controls not only their adsorption and dissociation behaviour at the nanoscale, but also their ability to reduce friction and wear at the macroscale. Here, we show using nonequilibrium molecular dynamics simulations with a reactive force field that tri(s-butyl)phosphate dissociates much faster than tri(n-butyl)phosphate when heated and compressed between sliding iron surfaces. For both molecules, dissociative chemisorption proceeds through cleavage of carbon-oxygen bonds.
View Article and Find Full Text PDFEngine oil-derived ash particles emitted from internal combustion (IC) engines are unwanted by-products, after oil is involved in in-cylinder combustion process. Since they typically come out together with particulate emissions, no detail has been reported about their early-stage particles other than agglomerated particles loaded on aftertreatment catalysts and filters. To better understand ash formation process during the combustion process, differently formulated engine oils were dosed into a fuel system of a gasoline direct injection (GDI) engine that produces low soot mass emissions at normal operating conditions to increase the chances to find stand-alone ash particles separated from soot aggregates in the sub-20-nm size range.
View Article and Find Full Text PDFThe amine assisted CO₂ capture process from coal fired power plants strives for the determination of degradation components and its consequences. Among them, nitrosamine formation and their emissions are of particular concern due to their environmental and health effects. The experiments were conducted using morpholine as a representative secondary amine as a potential CO₂ capture solvent with 100 ppm standard NO₂ gas to better understand the nitrosamine reaction pathways under scrubber and stripper conditions.
View Article and Find Full Text PDF