The development of novel methodologies that can detect biomarkers from cancer or other diseases is both a challenge and a need for clinical applications. This partly motivates efforts related to nanopore-based peptide sensing. Recent work has focused on the use of gold nanoparticles for selective detection of cysteine-containing peptides.
View Article and Find Full Text PDFOptical tweezers have a wide range of uses for mechanical manipulation of objects in the microscopic range. This includes both living and static cells in a variety of biomedical and research applications. Single-focus optical tweezers, formed by focusing a laser beam through a high numerical aperture immersion objective, create a significant force, which enables controlled transport of a variety of different cell types and morphologies in three dimensions.
View Article and Find Full Text PDFBiotechnological innovations have vastly improved the capacity to perform large-scale protein studies, while the methods we have for identifying and quantifying individual proteins are still inadequate to perform protein sequencing at the single-molecule level. Nanopore-inspired systems devoted to understanding how single molecules behave have been extensively developed for applications in genome sequencing. These nanopore systems are emerging as prominent tools for protein identification, detection, and analysis, suggesting realistic prospects for novel protein sequencing.
View Article and Find Full Text PDFIt was recently demonstrated that one can monitor ligand-induced structure fluctuations of individual thiolate-capped gold nanoclusters using resistive-pulse nanopore sensing. The magnitude of the fluctuations scales with the size of the capping ligand, and it was later shown one can observe ligand exchange in this nanopore setup. We expand on these results by exploring the different types of current fluctuations associated with peptide ligands attaching to tiopronin-capped gold nanoclusters.
View Article and Find Full Text PDFHolliday junctions (HJs) are an important class of nucleic acid structure utilized in DNA break repair processes. As such, these structures have great importance as therapeutic targets and for understanding the onset and development of various diseases. Single-molecule fluorescence resonance energy transfer (smFRET) has been used to study HJ structure-fluctuation kinetics, but given the rapid time scales associated with these kinetics (approximately sub-milliseconds) and the limited bandwidth of smFRET, these studies typically require one to slow down the structure fluctuations using divalent ions (e.
View Article and Find Full Text PDFProtein nanopores have emerged as an important class of sensors for the understanding of biophysical processes, such as molecular transport across membranes, and for the detection and characterization of biopolymers. Here, we trace the development of these sensors from the Coulter counter and squid axon studies to the modern applications including exquisite detection of small volume changes and molecular reactions at the single molecule (or reactant) scale. This review focuses on the chemistry of biological pores, and how that influences the physical chemistry of molecular detection.
View Article and Find Full Text PDFSingle-molecule approaches for probing the free energy of confinement for polymers in a nanopore environment are critical for the development of nanopore biosensors. We developed a laser-based nanopore heating approach to monitor the free energy profiles of such a single-molecule sensor. Using this approach, we measure the free energy profiles of two distinct polymers, polyethylene glycol and water-soluble peptides, as they interact with the nanopore sensor.
View Article and Find Full Text PDFIdentification of isomers using traditional mass spectroscopy methods has proven an interesting challenge due to their identical mass to charge ratios. This proves particularly consequential for gold clusters, as subtle variations in the ligand and cluster structure can have drastic effects on the cluster functionalization, solubility, and chemical properties. Biological nanopores have proven an effective tool in identifying subtle variations at the single molecule limit.
View Article and Find Full Text PDFThe cytosine (C)-rich sequences that can fold into tetraplex structures known as i-motif are prevalent in genomic DNA. Recent studies of i-motif-forming sequences have shown increasing evidence of their roles in gene regulation. However, most of these studies have been performed in short single-stranded oligonucleotides, far from the intracellular environment.
View Article and Find Full Text PDFNanopore-based resistive pulse sensing with biological nanopores has traditionally been applied to biopolymer analysis, but more recently, interest has grown in applying the technique to characterizing water-soluble metallic clusters. This paper reports on the use of α-hemolysin (αHL) for detecting a variety of thiolate-capped gold nanoclusters. The ligands studied here are p-mercaptobenzoic acid ( p-MBA), tiopronin (TP), and thiolated PEG (S-PEG).
View Article and Find Full Text PDFA single focus optical tweezer is formed when a laser beam is launched through a high numerical aperture immersion objective. This objective focuses the beam down to a diffraction-limited spot, which creates an optical trap where cells suspended in aqueous solutions can be held fixed. Spermatozoa, an often probative cell type in forensic investigations, can be captured inside this optical trap and dragged one by one across millimeter-length distances in order to create a cluster of cells which can be subsequently drawn up into a capillary for collection.
View Article and Find Full Text PDFThe redox potential of packed red blood cells (RBCs) was measured over a 56-day storage period using a newly developed potentiometric methodology consisting of a nanoporous gold electrode and a silver chloride coated silver reference electrode. Both milliliter- and microliter-sized volumes were separately evaluated. The addition of Vitamin C (VitC) in differing doses to the packed RBCs was also assessed as a means to improve redox stability and prolong storage duration.
View Article and Find Full Text PDFResistive pulse nanopore sensing enables label-free single-molecule analysis of a wide range of analytes. An increasing number of studies have demonstrated the feasibility and usefulness of nanopore sensing for protein and peptide characterization. Nanopores offer the potential to study a variety of protein-related phenomena that includes unfolding kinetics, differences in unfolding pathways, protein structure stability, and free-energy profiles of DNA-protein and RNA-protein binding.
View Article and Find Full Text PDFNanometer-scale pores have been developed for the detection, characterization, and quantification of a wide range of analytes (e.g., ions, polymers, proteins, anthrax toxins, neurotransmitters, and synthetic nanoparticles) and for DNA sequencing.
View Article and Find Full Text PDFSensing and characterization of water-soluble peptides is of critical importance in a wide variety of bioapplications. Single molecule nanopore spectrometry (SMNS) is based on the idea that one can use biological protein nanopores to resolve different sized molecules down to limits set by the blockade duration and noise. Previous work has shown that this enables discrimination between polyethylene glycol (PEG) molecules that differ by a single monomer unit.
View Article and Find Full Text PDFPotentiometric redox measurements were made in subnanoliter droplets of solutions using an optically transparent nanoporous gold electrode strategically mounted on the stage of an inverted microscope. Nanoporous gold was prepared via dealloying gold leaf with concentrated nitric acid and was chemisorbed to a standard microscope coverslip with (3-mercaptopropyl)trimethoxysilane. The gold surface was further modified with 1-hexanethiol to optimize hydrophobicity of the surface to allow for redox measurements to be made in nanoscopic volumes.
View Article and Find Full Text PDFTemperature studies coupled with resistive-pulse nanopore sensing enable the quantification of a variety of important thermodynamic properties at the single-molecule limit. Previous demonstrations of nanopore sensing with temperature control have utilized bulk chamber heating methodologies. This approach makes it difficult to rapidly change temperatures and enable optical access for other analytical techniques (i.
View Article and Find Full Text PDFRecent work described the use of thiolate-capped gold clusters (Au25(SG)18) with nanopore sensing to increase the residence time of polyethylene glycol (PEG) in an alpha hemolysin pore [Anal. Chem., 2014, 86, 11077].
View Article and Find Full Text PDFRecently proposed methods for DNA sequencing involve the use of cleavage-based enzymes attached to the opening of a nanopore. The idea is that DNA interacting with either an exonuclease or polymerase protein will lead to a small molecule being cleaved near the mouth of the nanopore, and subsequent entry into the pore will yield information about the DNA sequence. The prospects for this approach seem promising, but it has been shown that diffusion related effects impose a limit on the capture probability of molecules by the pore, which limits the efficacy of the technique.
View Article and Find Full Text PDFTryptophan (Trp) is a naturally occurring amino acid, which exhibits fluorescence emission properties that are dependent on the polarity of the local environment around the Trp side chain. However, this sensitivity also complicates interpretation of fluorescence emission data. A non-natural analogue of tryptophan, β-(1-azulenyl)-L-alanine, exhibits fluorescence insensitive to local solvent polarity and does not impact the structure or characteristics of several peptides examined.
View Article and Find Full Text PDFNanopore sensing is a label-free method for characterizing water-soluble molecules. The ability to accurately identify and characterize an analyte depends on the residence time of the molecule within the pore. It is shown here that when a Au25(SG)18 metallic cluster is bound to an α-hemolysin (αHL) nanopore, the mean residence time of polyethylene glycol (PEG) within the pore is increased by over 1 order of magnitude.
View Article and Find Full Text PDFWe demonstrate experimentally that anthrax toxin complexes rupture artificial lipid bilayer membranes when isolated from the blood of infected animals. When the solution pH is temporally acidified to mimic that process in endosomes, recombinant anthrax toxin forms an irreversibly bound complex, which also destabilizes membranes. The results suggest an alternative mechanism for the translocation of anthrax toxin into the cytoplasm.
View Article and Find Full Text PDFMolecular dynamics simulations were used to refine a theoretical model that describes the interaction of single polyethylene glycol (PEG) molecules with α-hemolysin (αHL) nanopores. The simulations support the underlying assumptions of the model, that PEG decreases the pore conductance by binding cations (which reduces the number of mobile ions in the pore) and by volume exclusion, and provide bounds for fits to new experimental data. Estimation of cation binding indicates that four monomers coordinate a single K(+) in a crown-ether-like structure, with, on average, 1.
View Article and Find Full Text PDFThe ability to perturb large ensembles of molecules from equilibrium led to major advances in understanding reaction mechanisms in chemistry and biology. Here, we demonstrate the ability to control, measure, and make use of rapid temperature changes in fluid volumes that are commensurate with the size of single molecules. The method is based on attaching gold nanoparticles to a single nanometer-scale pore formed by a protein ion channel.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.