Publications by authors named "Joseph E Munyaneza"

Introduction: The potato psyllid is the insect vector of the fastidious bacterium ' Liberibacter solanacearum'. The bacterium infects both and plant species, causing zebra chip (ZC) disease of potato and vein-greening disease of tomato. Temperatures are known to influence the initiation and progression of disease symptom in the host plant, and seasonal transitions from moderate to high temperatures trigger psyllid dispersal migration to facilitate survival.

View Article and Find Full Text PDF

The potato/tomato psyllid Bactericera cockerelli (Hemiptera: Triozidae) is a pest of Solanaceae plants and a vector of the pathogenic bacterium 'Candidatus Liberibacter solanacearum', which is associated with zebra chip disease in potato. This disease is controlled through insecticide treatments, and more environmentally friendly management options are desirable. The objective of this study was to identify viruses present in potato psyllid populations that might be used as biocontrol agents for this insect pest.

View Article and Find Full Text PDF

Understanding host use by psyllids (Hemiptera: Psylloidea) benefits from comparative studies of behavior on host and nonhost plant species. While most psyllid species develop on one or a few closely related plant species, some species are generalized enough to develop on species across plant families. We used electropenetography (EPG) technology to compare probing activities of an oligophagous psyllid (Bactericera cockerelli (Šulc)) and a host-specialized psyllid (Bactericera maculipennis) on two species of Solanaceae (potato, Solanum tuberosum L.

View Article and Find Full Text PDF

Understanding factors that affect the population dynamics of insect pest species is key for developing integrated pest management strategies in agroecosystems. Most insect pest populations are strongly regulated by abiotic factors such as temperature and precipitation, and assessing relationships between abiotic conditions and pest dynamics can aid decision-making. However, many pests are also managed with insecticides, which can confound relationships between abiotic factors and pest dynamics.

View Article and Find Full Text PDF

Zebra chip (ZC) disease of potato () is associated with infection by ' Liberibacter solanacearum' (Lso). Two haplotypes of Lso-A and B-occur in the United States. Lso haplotype B is more virulent than haplotype A, causing greater disease incidence in tubers, more severe symptoms, and greater loss in tuber yield.

View Article and Find Full Text PDF

The psyllid Bactericera maculipennis (Crawford) (Hemiptera: Triozidae) often cohabits field bindweed (Convolvulus arvensis, Solanales: Convolvulaceae) and other plants with the congeneric psyllid, Bactericera cockerelli (Šulc), in the Pacific Northwestern United States. Bactericera cockerelli is a vector of "Candidatus Liberibacter solanacearum," the pathogen associated with zebra chip disease of potato (Solanales: Solanaceae). Because B.

View Article and Find Full Text PDF

'Candidatus Liberibacter solanacearum' (Lso) is a phloem-limited bacterium that severely affects important Solanaceae and Apiaceae crops, including potato, tomato, pepper, tobacco, carrot and celery. This bacterium is transmitted to solanaceous species by potato psyllid, Bactericera cockerelli, and to Apiaceae by carrot psyllids, including Trioza apicalis and Bactericera trigonica. Five haplotypes of Lso have so far been described, two are associated with solanaceous species and potato psyllids, whereas the other three are associated with carrot and celery crops and carrot psyllids.

View Article and Find Full Text PDF

"Candidatus Liberibacter solanacearum" (Proteobacteria) is an important pathogen of solanaceous crops (Solanales: Solanaceae) in North America and New Zealand, and is the putative causal agent of zebra chip disease of potato. This phloem-limited pathogen is transmitted to potato and other solanaceous plants by the potato psyllid, Bactericera cockerelli (Hemiptera: Triozidae). While some plants in the Convolvulaceae (Solanales) are also known hosts for B.

View Article and Find Full Text PDF

The potato psyllid, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae), is a vector of the phloem-limited bacterium 'Candidatus Liberibacter solanacearum' (Lso), the putative causal agent of zebra chip disease of potato. Little is known about how potato psyllid transmits Lso to potato. We used electrical penetration graph (EPG) technology to compare stylet probing behaviors and efficiency of Lso transmission of three haplotypes of potato psyllid (Central, Western, Northwestern).

View Article and Find Full Text PDF

Zebra chip disease of potato is caused by the bacterial pathogen 'Candidatus Liberibacter solanacearum' and is a growing concern for commercial potato production in several countries in North and Central America and New Zealand. 'Ca. L.

View Article and Find Full Text PDF

Chlorogenic acid (CGA) is the major phenolic sink in potato tubers and can constitute over 90% of total phenylpropanoids. The regulation of CGA biosynthesis in potato and the role of the CGA biosynthetic gene hydroxycinnamoyl CoA:quinate hydroxycinnamoyl transferase (HQT) was characterized. A sucrose induced accumulation of CGA correlated with the increased expression of phenylalanine ammonia-lyase (PAL) rather than HQT.

View Article and Find Full Text PDF

"Candidatus Liberibacter solanacearum" (Lso) is an economically important pathogen of solanaceous crops and the putative causal agent of zebra chip disease of potato (Solanum tuberosum L.). This pathogen is transmitted to solanaceous species by the potato psyllid, Bactericera cockerelli (Šulc), but many aspects of the acquisition and transmission processes have yet to be elucidated.

View Article and Find Full Text PDF

The potato psyllid (Bactericera cockerelli Sulc) is an economically important insect pest of solanaceous crops such as potato, tomato, pepper, and tobacco. Historically, the potato psyllid's range included central United States, Mexico, and California; more recently, populations of this insect have been reported in Central America, the Pacific Northwest, and New Zealand. Like most phytophagous insects, potato psyllids require symbiotic bacteria to compensate for nutritional deficiencies in their diet.

View Article and Find Full Text PDF

The potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae) is a serious pest of potato and other solanaceous crops. B. cockerelli has been associated with the bacterium "Candidatus Liberibacter solanacearum" (Lso), the causal agent of zebra chip, a new and economically important disease of potato in the United States, Mexico, Central America, and New Zealand.

View Article and Find Full Text PDF

The potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae), is an economically important pest of potato (Solanum tuberosum L.) crops across the western and central United States, as it is known to cause psyllid yellows disease and to transmit the bacterium that causes zebra chip disease. Recent genotyping of B.

View Article and Find Full Text PDF

Although bacterial endosymbioses are common among phloeophagous herbivores, little is known regarding the effects of symbionts on herbivore host selection and population dynamics. We tested the hypothesis that plant selection and reproductive performance by a phloem-feeding herbivore (potato psyllid, Bactericera cockerelli) is mediated by infection of plants with a bacterial endosymbiont. We controlled for the effects of herbivory and endosymbiont infection by exposing potato plants (Solanum tuberosum) to psyllids infected with "Candidatus Liberibacter solanacearum" or to uninfected psyllids.

View Article and Find Full Text PDF

In plant pathosystems involving insect vectors, disease spread, incidence, and severity often depend on the density of the vector population and its rate of infectivity with the disease pathogen. The potato psyllid, Bactericera cockerelli (Sulc), has recently been associated with zebra chip (ZC), an emerging and economically important disease of potato in the United States, Mexico, Central America, and New Zealand. "Candidatus Liberibacter solanacearum," a previously undescribed species of liberibacter has been linked to the disease and is transmitted to potato by B.

View Article and Find Full Text PDF

Temperature has been shown to have a significant effect on development of liberibacter species associated with citrus Huanglongbing disease. 'Candidatus Liberibacter africanus' and 'Ca. L.

View Article and Find Full Text PDF

Successful transmission of plant pathogens by insects depends on the vector inoculation efficiency and how rapidly the insect can effectively transmit the pathogen to the host plant. The potato psyllid, Bactericera cockerelli (Sulc), has recently been found to transmit "Candidatus Liberibacter solanacearum," a bacterium associated with zebra chip (ZC), an emerging and economically important disease of potato in several parts of the world. Currently, little is known about the epidemiology of ZC and its vector's inoculation capabilities.

View Article and Find Full Text PDF

Background: The potato psyllid, Bactericera cockerelli, is a vector of Candidatus Liberibacter solanacearum, causing several diseases in solanaceous crops. Laboratory and field no-choice and choice experiments were conducted to evaluate the repellency of kaolin particle film on adults of B. cockerelli on tomato plants that had been sprayed with kaolin particle film on the upper surface only, on the lower surface only and on both leaf surfaces.

View Article and Find Full Text PDF

The psyllid Trioza apicalis Förster (Hemiptera: Triozidae) is a serious pest of carrots, Daucus carota L., in Europe. Carrots exhibiting symptoms of psyllid damage were observed in commercial fields in southern Finland in 2008.

View Article and Find Full Text PDF

Phytoplasma diseases are increasingly becoming important in vegetable crops in the Pacific Northwest. Recently, growers in the Columbia Basin and Yakima Valley experienced serious outbreaks of potato purple top disease that caused significant yield loss and a reduction in tuber processing quality. It was determined that the beet leafhopper-transmitted virescence agent (BLTVA) phytoplasma was the causal agent of the disease in the area and that this pathogen was transmitted by the beet leafhopper, Circulifer tenellus Baker (Hemiptera: Cicadellidae).

View Article and Find Full Text PDF

During the growing seasons of 2003 and 2004, a disease occurred in several carrot crops in south central Washington with symptoms suggestive of infection by phytopathogenic mollicutes (phytoplasmas and spiroplasmas). In the fall, many affected carrot plants exhibited extensive purple or yellow-purple leaf discoloration, general stunting of shoots and taproots, and formation of bunchy, fibrous secondary roots. For detection of the putative causal agents, polymerase chain reaction (PCR) assays were performed using primers specific to phytoplasmas as well as primers specific to plant-pathogenic spiroplasmas.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionkdl3jsn0296jd70ubn6fd5t3q15phrlo): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once