Chromosome segregation begins when the cysteine protease, separase, cleaves the Scc1 subunit of cohesin at the metaphase-to-anaphase transition. Separase is inhibited prior to metaphase by the tightly bound securin protein, which contains a pseudosubstrate motif that blocks the separase active site. To investigate separase substrate specificity and regulation, here we develop a system for producing recombinant, securin-free human separase.
View Article and Find Full Text PDFThe spatial organization of the genome within the eukaryotic nucleus is a dynamic process that plays a central role in cellular processes such as gene expression, DNA replication, and chromosome segregation. Condensins are conserved multi-subunit protein complexes that contribute to chromosome organization by regulating chromosome compaction and homolog pairing. Previous work in our laboratory has shown that the Cap-H2 subunit of condensin II physically and genetically interacts with the Drosophila homolog of human MORF4-related gene on chromosome 15 (MRG15).
View Article and Find Full Text PDFThe spatial organization of chromosomes within interphase nuclei is important for gene expression and epigenetic inheritance. Although the extent of physical interaction between chromosomes and their degree of compaction varies during development and between different cell-types, it is unclear how regulation of chromosome interactions and compaction relate to spatial organization of genomes. Drosophila is an excellent model system for studying chromosomal interactions including homolog pairing.
View Article and Find Full Text PDFPlk4 (Polo-like kinase 4) and its binding partner Asterless (Asl) are essential, conserved centriole assembly factors that induce centriole amplification when overexpressed. Previous studies found that Asl acts as a scaffolding protein; its N terminus binds Plk4's tandem Polo box cassette (PB1-PB2) and targets Plk4 to centrioles to initiate centriole duplication. However, how Asl overexpression drives centriole amplification is unknown.
View Article and Find Full Text PDFPolo-like kinase 4 (Plk4) is a master regulator of centriole duplication, and its hyperactivity induces centriole amplification. Homodimeric Plk4 has been shown to be ubiquitinated as a result of autophosphorylation, thus promoting its own degradation and preventing centriole amplification. Unlike other Plks, Plk4 contains three rather than two Polo box domains, and the function of its third Polo box (PB3) is unclear.
View Article and Find Full Text PDFPolo-like kinase 4 (Plk4) is a conserved master regulator of centriole assembly. Previously, we found that Drosophila Plk4 protein levels are actively suppressed during interphase. Degradation of interphase Plk4 prevents centriole overduplication and is mediated by the ubiquitin-ligase complex SCF(Slimb/βTrCP).
View Article and Find Full Text PDFDynamic regulation of chromosome structure and organization is critical for fundamental cellular processes such as gene expression and chromosome segregation. Condensins are conserved chromosome-associated proteins that regulate a variety of chromosome dynamics, including axial shortening, lateral compaction, and homolog pairing. However, how the in vivo activities of condensins are regulated and how functional interactors target condensins to chromatin are not well understood.
View Article and Find Full Text PDFCondensin complexes play vital roles in chromosome condensation during mitosis and meiosis. Condensin II uniquely localizes to chromatin throughout the cell cycle and, in addition to its mitotic duties, modulates chromosome organization and gene expression during interphase. Mitotic condensin activity is regulated by phosphorylation, but mechanisms that regulate condensin II during interphase are unclear.
View Article and Find Full Text PDFThe ideal experimental system would be cheap and easy to maintain, amenable to a variety of techniques, and would be supported by an extensive literature and genome sequence database. Cultured Drosophila S2 cells, the product of disassociated 20-24 hour old embryos, possess all these properties. Consequently, S2 cells are extremely well-suited for the analysis of cellular processes, including the discovery of the genes encoding the molecular components of the process or mechanism of interest.
View Article and Find Full Text PDFH8 is derived from a collection of Salmonella enterica serotype Enteritidis bacteriophage. Its morphology and genomic structure closely resemble those of bacteriophage T5 in the family Siphoviridae. H8 infected S.
View Article and Find Full Text PDF